A. Surkova, Aleksandra V Paderina, A. Legin, E. Grachova, D. Kirsanov
{"title":"分子发射器作为光多传感器系统的可调谐光源","authors":"A. Surkova, Aleksandra V Paderina, A. Legin, E. Grachova, D. Kirsanov","doi":"10.3390/csac2021-10611","DOIUrl":null,"url":null,"abstract":"In this study, optical multisensor systems based on molecular emitters as a light source are introduced. To obtain such light sources, cyclometalated Ir(III) complexes and Cu(I)-based complexes were synthetized and investigated. Since each complex has its own emission spectrum in the visible range, it is possible to choose an appropriate set of emitters for specific analytical tacks. The developed analytical device was successfully applied for fluoride and phosphate quantification in surface water.","PeriodicalId":9815,"journal":{"name":"Chemistry Proceedings","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Emitters as a Tunable Light Source for Optical Multisensor Systems\",\"authors\":\"A. Surkova, Aleksandra V Paderina, A. Legin, E. Grachova, D. Kirsanov\",\"doi\":\"10.3390/csac2021-10611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, optical multisensor systems based on molecular emitters as a light source are introduced. To obtain such light sources, cyclometalated Ir(III) complexes and Cu(I)-based complexes were synthetized and investigated. Since each complex has its own emission spectrum in the visible range, it is possible to choose an appropriate set of emitters for specific analytical tacks. The developed analytical device was successfully applied for fluoride and phosphate quantification in surface water.\",\"PeriodicalId\":9815,\"journal\":{\"name\":\"Chemistry Proceedings\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/csac2021-10611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/csac2021-10611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular Emitters as a Tunable Light Source for Optical Multisensor Systems
In this study, optical multisensor systems based on molecular emitters as a light source are introduced. To obtain such light sources, cyclometalated Ir(III) complexes and Cu(I)-based complexes were synthetized and investigated. Since each complex has its own emission spectrum in the visible range, it is possible to choose an appropriate set of emitters for specific analytical tacks. The developed analytical device was successfully applied for fluoride and phosphate quantification in surface water.