K. Stokos, Marios C. Georgiou, C. Roussos, E. Stiliaris, C. Papanicolas
{"title":"TES储罐热损失估算的实验方法","authors":"K. Stokos, Marios C. Georgiou, C. Roussos, E. Stiliaris, C. Papanicolas","doi":"10.1063/1.5117745","DOIUrl":null,"url":null,"abstract":"The present work introduces an indirect approach for the estimation of the heat losses in TES (Thermal Energy Storage) tanks. Heat losses are calculated taking into account the fact that in steady state condition they are equal to the heat input provided by electric heaters. The proposed methodology has been tested in the TESLAB (Thermal Energy Storage LABoratory) tank which is equipped with two electric heaters simulating the heat input from solar irradiation. Heaters’ operation is controlled by an industrial PID (Proportional Integral Derivative) controller regulating their duty factor to achieve the desired set temperature. Total electric power is calculated as the summation of the contribution of each heater, which is equal to the product of the duty factor and the measured electric power. Heat losses for the TESLAB tank are compared with the measured losses during the cooling process satisfactorily. The proposed methodology could be also applied for the measurement of the heat losses of larger tanks, receivers and even CSP (Concentrated Solar Power) plants under operation without solar irradiation. Preliminary testing at the CSP-DSW (Concentrated Solar Power-Desalinated Sea Water) plant of The Cyprus Institute at PROTEAS (Platform for Research, Observation and TEchnological Applications in Solar energy) is quite promising.The present work introduces an indirect approach for the estimation of the heat losses in TES (Thermal Energy Storage) tanks. Heat losses are calculated taking into account the fact that in steady state condition they are equal to the heat input provided by electric heaters. The proposed methodology has been tested in the TESLAB (Thermal Energy Storage LABoratory) tank which is equipped with two electric heaters simulating the heat input from solar irradiation. Heaters’ operation is controlled by an industrial PID (Proportional Integral Derivative) controller regulating their duty factor to achieve the desired set temperature. Total electric power is calculated as the summation of the contribution of each heater, which is equal to the product of the duty factor and the measured electric power. Heat losses for the TESLAB tank are compared with the measured losses during the cooling process satisfactorily. The proposed methodology could be also applied for the measurement of the heat losses of larger tanks,...","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"135 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental methodology for the heat losses estimation in TES tanks\",\"authors\":\"K. Stokos, Marios C. Georgiou, C. Roussos, E. Stiliaris, C. Papanicolas\",\"doi\":\"10.1063/1.5117745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work introduces an indirect approach for the estimation of the heat losses in TES (Thermal Energy Storage) tanks. Heat losses are calculated taking into account the fact that in steady state condition they are equal to the heat input provided by electric heaters. The proposed methodology has been tested in the TESLAB (Thermal Energy Storage LABoratory) tank which is equipped with two electric heaters simulating the heat input from solar irradiation. Heaters’ operation is controlled by an industrial PID (Proportional Integral Derivative) controller regulating their duty factor to achieve the desired set temperature. Total electric power is calculated as the summation of the contribution of each heater, which is equal to the product of the duty factor and the measured electric power. Heat losses for the TESLAB tank are compared with the measured losses during the cooling process satisfactorily. The proposed methodology could be also applied for the measurement of the heat losses of larger tanks, receivers and even CSP (Concentrated Solar Power) plants under operation without solar irradiation. Preliminary testing at the CSP-DSW (Concentrated Solar Power-Desalinated Sea Water) plant of The Cyprus Institute at PROTEAS (Platform for Research, Observation and TEchnological Applications in Solar energy) is quite promising.The present work introduces an indirect approach for the estimation of the heat losses in TES (Thermal Energy Storage) tanks. Heat losses are calculated taking into account the fact that in steady state condition they are equal to the heat input provided by electric heaters. The proposed methodology has been tested in the TESLAB (Thermal Energy Storage LABoratory) tank which is equipped with two electric heaters simulating the heat input from solar irradiation. Heaters’ operation is controlled by an industrial PID (Proportional Integral Derivative) controller regulating their duty factor to achieve the desired set temperature. Total electric power is calculated as the summation of the contribution of each heater, which is equal to the product of the duty factor and the measured electric power. Heat losses for the TESLAB tank are compared with the measured losses during the cooling process satisfactorily. The proposed methodology could be also applied for the measurement of the heat losses of larger tanks,...\",\"PeriodicalId\":21790,\"journal\":{\"name\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5117745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental methodology for the heat losses estimation in TES tanks
The present work introduces an indirect approach for the estimation of the heat losses in TES (Thermal Energy Storage) tanks. Heat losses are calculated taking into account the fact that in steady state condition they are equal to the heat input provided by electric heaters. The proposed methodology has been tested in the TESLAB (Thermal Energy Storage LABoratory) tank which is equipped with two electric heaters simulating the heat input from solar irradiation. Heaters’ operation is controlled by an industrial PID (Proportional Integral Derivative) controller regulating their duty factor to achieve the desired set temperature. Total electric power is calculated as the summation of the contribution of each heater, which is equal to the product of the duty factor and the measured electric power. Heat losses for the TESLAB tank are compared with the measured losses during the cooling process satisfactorily. The proposed methodology could be also applied for the measurement of the heat losses of larger tanks, receivers and even CSP (Concentrated Solar Power) plants under operation without solar irradiation. Preliminary testing at the CSP-DSW (Concentrated Solar Power-Desalinated Sea Water) plant of The Cyprus Institute at PROTEAS (Platform for Research, Observation and TEchnological Applications in Solar energy) is quite promising.The present work introduces an indirect approach for the estimation of the heat losses in TES (Thermal Energy Storage) tanks. Heat losses are calculated taking into account the fact that in steady state condition they are equal to the heat input provided by electric heaters. The proposed methodology has been tested in the TESLAB (Thermal Energy Storage LABoratory) tank which is equipped with two electric heaters simulating the heat input from solar irradiation. Heaters’ operation is controlled by an industrial PID (Proportional Integral Derivative) controller regulating their duty factor to achieve the desired set temperature. Total electric power is calculated as the summation of the contribution of each heater, which is equal to the product of the duty factor and the measured electric power. Heat losses for the TESLAB tank are compared with the measured losses during the cooling process satisfactorily. The proposed methodology could be also applied for the measurement of the heat losses of larger tanks,...