{"title":"“NLP技术能否被用作医学科学的可靠工具?”-建立一个分类医疗报告的NLP框架","authors":"Nafiz Sadman, Sumaiya Tasneem, Ariful Haque, Maminur Islam, M. Ahsan, Kishor Datta Gupta","doi":"10.1109/IEMCON51383.2020.9284834","DOIUrl":null,"url":null,"abstract":"Artificial intelligence persists on being a right-hand tool for many branches of biology. From preliminary advices and treatments, such as understanding if symptoms related to fever or cold, to critical detection of cancerous cell or classification of X-rays, traditional machine learning and deep learning techniques achieved remarkable feats. However, total dependency on machine-based prediction is yet a far fetched concept. In this paper, we provide a framework utilizing several Natural Language Processing (NLP) algorithms to construct a comparative analysis. We create an ensemble of top-performing algorithms to accomplish classification task on medical reports. We compare both the traditional machine learning and deep learning techniques and evaluate their probabilities of being reliable on analyzing medical diagnosis. We concluded that an ensemble approach can provide reliable outcomes with accuracy over 92% and that the current state of the art is unequipped to provide the result with the standard needed for health sectors but an ensemble of these techniques can be a pathway for future research direction.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"11 1","pages":"0159-0166"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"“Can NLP techniques be utilized as a reliable tool for medical science?” - Building a NLP Framework to Classify Medical Reports\",\"authors\":\"Nafiz Sadman, Sumaiya Tasneem, Ariful Haque, Maminur Islam, M. Ahsan, Kishor Datta Gupta\",\"doi\":\"10.1109/IEMCON51383.2020.9284834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence persists on being a right-hand tool for many branches of biology. From preliminary advices and treatments, such as understanding if symptoms related to fever or cold, to critical detection of cancerous cell or classification of X-rays, traditional machine learning and deep learning techniques achieved remarkable feats. However, total dependency on machine-based prediction is yet a far fetched concept. In this paper, we provide a framework utilizing several Natural Language Processing (NLP) algorithms to construct a comparative analysis. We create an ensemble of top-performing algorithms to accomplish classification task on medical reports. We compare both the traditional machine learning and deep learning techniques and evaluate their probabilities of being reliable on analyzing medical diagnosis. We concluded that an ensemble approach can provide reliable outcomes with accuracy over 92% and that the current state of the art is unequipped to provide the result with the standard needed for health sectors but an ensemble of these techniques can be a pathway for future research direction.\",\"PeriodicalId\":6871,\"journal\":{\"name\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"11 1\",\"pages\":\"0159-0166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMCON51383.2020.9284834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
“Can NLP techniques be utilized as a reliable tool for medical science?” - Building a NLP Framework to Classify Medical Reports
Artificial intelligence persists on being a right-hand tool for many branches of biology. From preliminary advices and treatments, such as understanding if symptoms related to fever or cold, to critical detection of cancerous cell or classification of X-rays, traditional machine learning and deep learning techniques achieved remarkable feats. However, total dependency on machine-based prediction is yet a far fetched concept. In this paper, we provide a framework utilizing several Natural Language Processing (NLP) algorithms to construct a comparative analysis. We create an ensemble of top-performing algorithms to accomplish classification task on medical reports. We compare both the traditional machine learning and deep learning techniques and evaluate their probabilities of being reliable on analyzing medical diagnosis. We concluded that an ensemble approach can provide reliable outcomes with accuracy over 92% and that the current state of the art is unequipped to provide the result with the standard needed for health sectors but an ensemble of these techniques can be a pathway for future research direction.