利用差分编码改进基于模型的心电压缩的压缩比

Z. Passand, M. Azarnoosh
{"title":"利用差分编码改进基于模型的心电压缩的压缩比","authors":"Z. Passand, M. Azarnoosh","doi":"10.1109/BIBMW.2011.6112502","DOIUrl":null,"url":null,"abstract":"This article proposes a technique to improve compression ratio for model-based ECG compression techniques. The proposed technique takes advantage of the quasi-periodic nature of ECG signals and uses differential coding to increase the compression ratio. It is shown that the proposed technique increase the compression ratio by a factor of about two compared to conventional compression ratio for model-based ECG compressions.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"1 1","pages":"918-918"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved compression ratio for model-based ECG compression using differential coding\",\"authors\":\"Z. Passand, M. Azarnoosh\",\"doi\":\"10.1109/BIBMW.2011.6112502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a technique to improve compression ratio for model-based ECG compression techniques. The proposed technique takes advantage of the quasi-periodic nature of ECG signals and uses differential coding to increase the compression ratio. It is shown that the proposed technique increase the compression ratio by a factor of about two compared to conventional compression ratio for model-based ECG compressions.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"1 1\",\"pages\":\"918-918\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2011.6112502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种提高基于模型的心电压缩技术的压缩比的方法。该方法利用心电信号的准周期特性,采用差分编码提高压缩比。结果表明,与传统的基于模型的心电压缩相比,该方法将压缩比提高了约两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved compression ratio for model-based ECG compression using differential coding
This article proposes a technique to improve compression ratio for model-based ECG compression techniques. The proposed technique takes advantage of the quasi-periodic nature of ECG signals and uses differential coding to increase the compression ratio. It is shown that the proposed technique increase the compression ratio by a factor of about two compared to conventional compression ratio for model-based ECG compressions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1