F. Holecz, J. Moreira, P. Pasquali, S. Voigt, E. Meier, D. Nuesch
{"title":"使用机载AeS-1 InSAR数据生成高度模型、自动地理编码和拼接","authors":"F. Holecz, J. Moreira, P. Pasquali, S. Voigt, E. Meier, D. Nuesch","doi":"10.1109/IGARSS.1997.609148","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to present the generation of high resolution digital surface models using airborne AeS-1 interferometric SAR data, their automatic geocoding and mosaicing. In order to be able to carry out these steps, high precision differential Global Positioning System data, high frequency attitude data of the platform, exact time synchronization and range delay of the system must be known. Since in the airborne case motion instabilities are large, due to dynamic properties of the aircraft and atmospheric turbulences, precise motion measurements of the platform are extracted and considered during the SAR processing. Once that all these basic requirements are fulfilled, one is able, using the processing reference tracks, and exploiting a forward-backward geocoding, to convert the phase differences to elevation data and to geolocate them by taking into account all geodetic and cartographic transforms. Results based on 400 MHz X-band InSAR data show that the derived surface model has a positioning accuracy in the order of 0.5 m and a height accuracy better than 0.3 m.","PeriodicalId":64877,"journal":{"name":"遥感信息","volume":"9 1","pages":"1929-1931 vol.4"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Height model generation, automatic geocoding and a mosaicing using airborne AeS-1 InSAR data\",\"authors\":\"F. Holecz, J. Moreira, P. Pasquali, S. Voigt, E. Meier, D. Nuesch\",\"doi\":\"10.1109/IGARSS.1997.609148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to present the generation of high resolution digital surface models using airborne AeS-1 interferometric SAR data, their automatic geocoding and mosaicing. In order to be able to carry out these steps, high precision differential Global Positioning System data, high frequency attitude data of the platform, exact time synchronization and range delay of the system must be known. Since in the airborne case motion instabilities are large, due to dynamic properties of the aircraft and atmospheric turbulences, precise motion measurements of the platform are extracted and considered during the SAR processing. Once that all these basic requirements are fulfilled, one is able, using the processing reference tracks, and exploiting a forward-backward geocoding, to convert the phase differences to elevation data and to geolocate them by taking into account all geodetic and cartographic transforms. Results based on 400 MHz X-band InSAR data show that the derived surface model has a positioning accuracy in the order of 0.5 m and a height accuracy better than 0.3 m.\",\"PeriodicalId\":64877,\"journal\":{\"name\":\"遥感信息\",\"volume\":\"9 1\",\"pages\":\"1929-1931 vol.4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遥感信息\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.1997.609148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感信息","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/IGARSS.1997.609148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Height model generation, automatic geocoding and a mosaicing using airborne AeS-1 InSAR data
The goal of this paper is to present the generation of high resolution digital surface models using airborne AeS-1 interferometric SAR data, their automatic geocoding and mosaicing. In order to be able to carry out these steps, high precision differential Global Positioning System data, high frequency attitude data of the platform, exact time synchronization and range delay of the system must be known. Since in the airborne case motion instabilities are large, due to dynamic properties of the aircraft and atmospheric turbulences, precise motion measurements of the platform are extracted and considered during the SAR processing. Once that all these basic requirements are fulfilled, one is able, using the processing reference tracks, and exploiting a forward-backward geocoding, to convert the phase differences to elevation data and to geolocate them by taking into account all geodetic and cartographic transforms. Results based on 400 MHz X-band InSAR data show that the derived surface model has a positioning accuracy in the order of 0.5 m and a height accuracy better than 0.3 m.
期刊介绍:
Remote Sensing Information is a bimonthly academic journal supervised by the Ministry of Natural Resources of the People's Republic of China and sponsored by China Academy of Surveying and Mapping Science. Since its inception in 1986, it has been one of the authoritative journals in the field of remote sensing in China.In 2014, it was recognised as one of the first batch of national academic journals, and was awarded the honours of Core Journals of China Science Citation Database, Chinese Core Journals, and Core Journals of Science and Technology of China. The journal won the Excellence Award (First Prize) of the National Excellent Surveying, Mapping and Geographic Information Journal Award in 2011 and 2017 respectively.
Remote Sensing Information is dedicated to reporting the cutting-edge theoretical and applied results of remote sensing science and technology, promoting academic exchanges at home and abroad, and promoting the application of remote sensing science and technology and industrial development. The journal adheres to the principles of openness, fairness and professionalism, abides by the anonymous review system of peer experts, and has good social credibility. The main columns include Review, Theoretical Research, Innovative Applications, Special Reports, International News, Famous Experts' Forum, Geographic National Condition Monitoring, etc., covering various fields such as surveying and mapping, forestry, agriculture, geology, meteorology, ocean, environment, national defence and so on.
Remote Sensing Information aims to provide a high-level academic exchange platform for experts and scholars in the field of remote sensing at home and abroad, to enhance academic influence, and to play a role in promoting and supporting the protection of natural resources, green technology innovation, and the construction of ecological civilisation.