翅片式紧凑型换热器涡发生器增容和尾迹管理的攻角参数化

IF 1.6 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Thermal Science and Engineering Applications Pub Date : 2023-07-25 DOI:10.1115/1.4063046
A. Arora, P. Subbarao
{"title":"翅片式紧凑型换热器涡发生器增容和尾迹管理的攻角参数化","authors":"A. Arora, P. Subbarao","doi":"10.1115/1.4063046","DOIUrl":null,"url":null,"abstract":"\n Enhancing gas-side thermal conductance is essential for the compact sizing of finned-tube heat exchangers, and this study attempts it by integrating vortex generators. The orientation of the vortex generators, which is defined by its attack angle, has a strong bearing on the degree of augmentation. As energy-efficiency keeps varying with the attack angle, the thrust of this investigation is to identify best attack angle(s) for the stipulated task. Since spatial positioning of the generators too has a strong bearing on the energy-efficiency, therefore, its effect is duly accounted for a comprehensive investigation. For the selection of optimal designs, regression-based phenomenological models are used as they apply thermo-hydraulic trade-off. After determining the best angle(s), a study is carried out to evaluate their robustness under varying operating conditions. Although phenomenological models are adequate for design optimization, they do not describe the physics of thermo-hydraulic enhancement. Therefore, a study explaining the bearing of design modifications on the local characteristics too is carried out. Additionally, a study discussing the effect of generators' attack angle on heat transfer over the wake affected surfaces, which has a predominant existence in baseline flows, is reported. It has been found that the thermal augmentation over the said surfaces is the key to compact sizing of the system. For a selected wake-region deployment, the highest relative Colburn j-factor corresponding to wake-affected fin equals 3.07 at a specified Reynolds number..","PeriodicalId":17404,"journal":{"name":"Journal of Thermal Science and Engineering Applications","volume":"126 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attack angle parametrization for capacity augmentation and wake management by vortex generators in finned compact heat exchangers\",\"authors\":\"A. Arora, P. Subbarao\",\"doi\":\"10.1115/1.4063046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Enhancing gas-side thermal conductance is essential for the compact sizing of finned-tube heat exchangers, and this study attempts it by integrating vortex generators. The orientation of the vortex generators, which is defined by its attack angle, has a strong bearing on the degree of augmentation. As energy-efficiency keeps varying with the attack angle, the thrust of this investigation is to identify best attack angle(s) for the stipulated task. Since spatial positioning of the generators too has a strong bearing on the energy-efficiency, therefore, its effect is duly accounted for a comprehensive investigation. For the selection of optimal designs, regression-based phenomenological models are used as they apply thermo-hydraulic trade-off. After determining the best angle(s), a study is carried out to evaluate their robustness under varying operating conditions. Although phenomenological models are adequate for design optimization, they do not describe the physics of thermo-hydraulic enhancement. Therefore, a study explaining the bearing of design modifications on the local characteristics too is carried out. Additionally, a study discussing the effect of generators' attack angle on heat transfer over the wake affected surfaces, which has a predominant existence in baseline flows, is reported. It has been found that the thermal augmentation over the said surfaces is the key to compact sizing of the system. For a selected wake-region deployment, the highest relative Colburn j-factor corresponding to wake-affected fin equals 3.07 at a specified Reynolds number..\",\"PeriodicalId\":17404,\"journal\":{\"name\":\"Journal of Thermal Science and Engineering Applications\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Science and Engineering Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063046\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Engineering Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

提高气侧导热系数是翅片管换热器小型化的关键,本研究尝试通过集成涡发生器来实现。涡发生器的方向由其攻角决定,对增强的程度有很大的影响。由于能源效率随攻角不断变化,本研究的重点是确定规定任务的最佳攻角。由于发电机的空间位置对能源效率也有很大的影响,因此,对其影响应进行全面的调查。对于最优设计的选择,采用了基于回归的现象学模型,因为它应用了热-水力权衡。在确定最佳角度后,对其在不同工况下的鲁棒性进行了研究。虽然现象学模型足以用于设计优化,但它们不能描述热水力增强的物理特性。因此,也进行了一项研究来解释设计修改对当地特征的影响。此外,本文还报道了一项研究,讨论了发电机攻角对尾迹影响表面传热的影响,这种影响在基线流动中普遍存在。已经发现,在上述表面上的热增强是系统紧凑尺寸的关键。对于选定的尾迹区域部署,在指定雷诺数下,尾迹影响鳍对应的最高相对科尔伯恩j因子为3.07。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attack angle parametrization for capacity augmentation and wake management by vortex generators in finned compact heat exchangers
Enhancing gas-side thermal conductance is essential for the compact sizing of finned-tube heat exchangers, and this study attempts it by integrating vortex generators. The orientation of the vortex generators, which is defined by its attack angle, has a strong bearing on the degree of augmentation. As energy-efficiency keeps varying with the attack angle, the thrust of this investigation is to identify best attack angle(s) for the stipulated task. Since spatial positioning of the generators too has a strong bearing on the energy-efficiency, therefore, its effect is duly accounted for a comprehensive investigation. For the selection of optimal designs, regression-based phenomenological models are used as they apply thermo-hydraulic trade-off. After determining the best angle(s), a study is carried out to evaluate their robustness under varying operating conditions. Although phenomenological models are adequate for design optimization, they do not describe the physics of thermo-hydraulic enhancement. Therefore, a study explaining the bearing of design modifications on the local characteristics too is carried out. Additionally, a study discussing the effect of generators' attack angle on heat transfer over the wake affected surfaces, which has a predominant existence in baseline flows, is reported. It has been found that the thermal augmentation over the said surfaces is the key to compact sizing of the system. For a selected wake-region deployment, the highest relative Colburn j-factor corresponding to wake-affected fin equals 3.07 at a specified Reynolds number..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermal Science and Engineering Applications
Journal of Thermal Science and Engineering Applications THERMODYNAMICSENGINEERING, MECHANICAL -ENGINEERING, MECHANICAL
CiteScore
3.60
自引率
9.50%
发文量
120
期刊介绍: Applications in: Aerospace systems; Gas turbines; Biotechnology; Defense systems; Electronic and photonic equipment; Energy systems; Manufacturing; Refrigeration and air conditioning; Homeland security systems; Micro- and nanoscale devices; Petrochemical processing; Medical systems; Energy efficiency; Sustainability; Solar systems; Combustion systems
期刊最新文献
Improving turbine endwall overall cooling effectiveness using curtain cooling and redistributed film-hole layouts: an experimental and computational study Soft Computing Model for Inverse Prediction of Surface Heat Flux from Temperature Responses in Short-Duration Heat Transfer Experiments Aerothermal Optimization of Film Cooling Hole Locations on the Squealer Tip of an HP Turbine Blade Theoretical investigation of low global warming potential blends replacing R404A: the simple refrigeration cycle and its modifications Study on the Influence of Fan and Fan Cowl on Intake Air Parameters of Cooling Module
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1