块规则网格上平稳高斯随机场模拟的块循环嵌入方法

M. Park, M. Tretyakov
{"title":"块规则网格上平稳高斯随机场模拟的块循环嵌入方法","authors":"M. Park, M. Tretyakov","doi":"10.1615/Int.J.UncertaintyQuantification.2015013781","DOIUrl":null,"url":null,"abstract":"We propose a new method for sampling from stationary Gaussian random field on a grid which is not regular but has a regular block structure which is often the case in applications. The introduced block circulant embedding method (BCEM) can outperform the classical circulant embedding method (CEM) which requires a regularization of the irregular grid before its application. Comparison of BCEM vs CEM is performed on some typical model problems.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Block Circulant Embedding Method for Simulation of Stationary Gaussian Random Fields on Block-regular Grids\",\"authors\":\"M. Park, M. Tretyakov\",\"doi\":\"10.1615/Int.J.UncertaintyQuantification.2015013781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new method for sampling from stationary Gaussian random field on a grid which is not regular but has a regular block structure which is often the case in applications. The introduced block circulant embedding method (BCEM) can outperform the classical circulant embedding method (CEM) which requires a regularization of the irregular grid before its application. Comparison of BCEM vs CEM is performed on some typical model problems.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/Int.J.UncertaintyQuantification.2015013781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/Int.J.UncertaintyQuantification.2015013781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种在非规则网格上从平稳高斯随机场进行采样的新方法,这种网格具有规则的块结构,在实际应用中很常见。本文提出的块循环嵌入方法(BCEM)优于经典循环嵌入方法(CEM),后者在应用前需要对不规则网格进行正则化处理。对一些典型的模型问题进行了BCEM和CEM的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Block Circulant Embedding Method for Simulation of Stationary Gaussian Random Fields on Block-regular Grids
We propose a new method for sampling from stationary Gaussian random field on a grid which is not regular but has a regular block structure which is often the case in applications. The introduced block circulant embedding method (BCEM) can outperform the classical circulant embedding method (CEM) which requires a regularization of the irregular grid before its application. Comparison of BCEM vs CEM is performed on some typical model problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1