脂质双层定量分析的低温电镜优化

IF 2.4 Q3 BIOPHYSICS Biophysical reports Pub Date : 2022-08-24 DOI:10.1101/2022.08.23.505005
Frederick A. Heberle, Doug Welsch, H. L. Scott, M. Waxham
{"title":"脂质双层定量分析的低温电镜优化","authors":"Frederick A. Heberle, Doug Welsch, H. L. Scott, M. Waxham","doi":"10.1101/2022.08.23.505005","DOIUrl":null,"url":null,"abstract":"Cryogenic electron microscopy (cryo-EM) is among the most powerful tools available for interrogating nanoscale structure of biological structures. We recently showed that cryo-EM can be used to measure the bilayer thickness of lipid vesicles and biological membranes with sub-angstrom precision, resulting in the direct visualization of nanoscopic domains of different thickness in multicomponent lipid mixtures and giant plasma membrane vesicles. Despite the great potential of cryo-EM for revealing the lateral organization of biomembranes, a large parameter space of experimental conditions remains to be optimized. Here, we systematically investigate the influence of instrument parameters and image post-processing steps on the ability to accurately measure bilayer thickness and discriminate regions of different thickness within unilamellar liposomes. We also demonstrate a spatial autocorrelation analysis to extract additional information about lateral heterogeneity. Significance Raft domains in unstimulated cells have proven difficult to directly visualize owing to their nanoscopic size and fleeting existence. The few techniques capable of nanoscopic spatial resolution typically rely on interpretation of indirect spectroscopic or scattering signals or require stabilizing the membrane on a solid support. In contrast, cryo-EM yields direct images of nanoscale domains in probe-free, unsupported membranes. Here, we systematically optimize key steps in the experimental and analysis workflow for this new and specialized application. Our findings represent an important step toward developing cryo-EM into a robust method for investigating phase behavior of membranes at length scales relevant to lipid rafts.","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of cryo-electron microscopy for quantitative analysis of lipid bilayers\",\"authors\":\"Frederick A. Heberle, Doug Welsch, H. L. Scott, M. Waxham\",\"doi\":\"10.1101/2022.08.23.505005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cryogenic electron microscopy (cryo-EM) is among the most powerful tools available for interrogating nanoscale structure of biological structures. We recently showed that cryo-EM can be used to measure the bilayer thickness of lipid vesicles and biological membranes with sub-angstrom precision, resulting in the direct visualization of nanoscopic domains of different thickness in multicomponent lipid mixtures and giant plasma membrane vesicles. Despite the great potential of cryo-EM for revealing the lateral organization of biomembranes, a large parameter space of experimental conditions remains to be optimized. Here, we systematically investigate the influence of instrument parameters and image post-processing steps on the ability to accurately measure bilayer thickness and discriminate regions of different thickness within unilamellar liposomes. We also demonstrate a spatial autocorrelation analysis to extract additional information about lateral heterogeneity. Significance Raft domains in unstimulated cells have proven difficult to directly visualize owing to their nanoscopic size and fleeting existence. The few techniques capable of nanoscopic spatial resolution typically rely on interpretation of indirect spectroscopic or scattering signals or require stabilizing the membrane on a solid support. In contrast, cryo-EM yields direct images of nanoscale domains in probe-free, unsupported membranes. Here, we systematically optimize key steps in the experimental and analysis workflow for this new and specialized application. Our findings represent an important step toward developing cryo-EM into a robust method for investigating phase behavior of membranes at length scales relevant to lipid rafts.\",\"PeriodicalId\":72402,\"journal\":{\"name\":\"Biophysical reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2022.08.23.505005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2022.08.23.505005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

低温电子显微镜(cryo-EM)是研究纳米级生物结构的最有力工具之一。我们最近发现,冷冻电镜可以用亚埃精度测量脂质囊泡和生物膜的双层厚度,从而直接显示多组分脂质混合物和巨型质膜囊泡中不同厚度的纳米级结构域。低温电镜在揭示生物膜的横向组织方面具有很大的潜力,但实验条件的参数空间仍有待优化。在这里,我们系统地研究了仪器参数和图像后处理步骤对精确测量双层厚度和区分单层脂质体中不同厚度区域的能力的影响。我们还演示了空间自相关分析,以提取有关横向异质性的额外信息。筏结构域在未受刺激的细胞中,由于其纳米级大小和短暂的存在,已被证明难以直接可视化。少数能够实现纳米级空间分辨率的技术通常依赖于间接光谱或散射信号的解释,或者需要在固体支撑上稳定膜。相比之下,低温电镜能在无探针、无支撑的膜中产生纳米级结构域的直接图像。在这里,我们系统地优化实验和分析工作流程的关键步骤,为这个新的和专业的应用。我们的研究结果代表了将低温电镜技术发展成为研究与脂筏相关的膜相行为的可靠方法的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of cryo-electron microscopy for quantitative analysis of lipid bilayers
Cryogenic electron microscopy (cryo-EM) is among the most powerful tools available for interrogating nanoscale structure of biological structures. We recently showed that cryo-EM can be used to measure the bilayer thickness of lipid vesicles and biological membranes with sub-angstrom precision, resulting in the direct visualization of nanoscopic domains of different thickness in multicomponent lipid mixtures and giant plasma membrane vesicles. Despite the great potential of cryo-EM for revealing the lateral organization of biomembranes, a large parameter space of experimental conditions remains to be optimized. Here, we systematically investigate the influence of instrument parameters and image post-processing steps on the ability to accurately measure bilayer thickness and discriminate regions of different thickness within unilamellar liposomes. We also demonstrate a spatial autocorrelation analysis to extract additional information about lateral heterogeneity. Significance Raft domains in unstimulated cells have proven difficult to directly visualize owing to their nanoscopic size and fleeting existence. The few techniques capable of nanoscopic spatial resolution typically rely on interpretation of indirect spectroscopic or scattering signals or require stabilizing the membrane on a solid support. In contrast, cryo-EM yields direct images of nanoscale domains in probe-free, unsupported membranes. Here, we systematically optimize key steps in the experimental and analysis workflow for this new and specialized application. Our findings represent an important step toward developing cryo-EM into a robust method for investigating phase behavior of membranes at length scales relevant to lipid rafts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
期刊最新文献
Development of a digital amplifier system for cut-open oocyte electrophysiology. Structural studies of the human α1 glycine receptor via site-specific chemical cross-linking coupled with mass spectrometry. Expression level of cardiac ryanodine receptors dictates properties of Ca2+-induced Ca2+ release. Nonlinear classifiers for wet-neuromorphic computing using gene regulatory neural network. Magnetic field platform for experiments on well-mixed and spatially structured microbial populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1