基于广义procrustes分析的主动外观模型形状分析及其面部表情识别

D. Komalasari, M. R. Widyanto, T. Basaruddin, D. Liliana
{"title":"基于广义procrustes分析的主动外观模型形状分析及其面部表情识别","authors":"D. Komalasari, M. R. Widyanto, T. Basaruddin, D. Liliana","doi":"10.1109/ICECOS.2017.8167123","DOIUrl":null,"url":null,"abstract":"Facial expression recognition is an active research area in the field of signal social processing. The goal is to distinguish human emotion. The problem is similar emotion, variation of emotion, and independent object through face image. The existing research using various method for modeling human facial to entirely describe facial expression through face image. We consider to variation analysis of the face image using Generalized Procrustes Analysis (GPA) method. GPA is implied for modeling variation of facial expression. We fit our GPA model exact the position of facial skeleton using Active Appearance Model (AAM). AAM is needed for extract shape feature of face image. Also, we use Gabor to get texture information of face image. The facial expression recognition method is based on Support Vector Machine (SVM). We tested our model with CK+ and Jaffe dataset on six basic emotion: anger, disgust, fear, happy, sad, and surprise. Our method gained accuracy 93.58% for CK+ dataset and 94.7% for Jaffe dataset.","PeriodicalId":6528,"journal":{"name":"2017 International Conference on Electrical Engineering and Computer Science (ICECOS)","volume":"24 1","pages":"154-159"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Shape analysis using generalized procrustes analysis on Active Appearance Model for facial expression recognition\",\"authors\":\"D. Komalasari, M. R. Widyanto, T. Basaruddin, D. Liliana\",\"doi\":\"10.1109/ICECOS.2017.8167123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression recognition is an active research area in the field of signal social processing. The goal is to distinguish human emotion. The problem is similar emotion, variation of emotion, and independent object through face image. The existing research using various method for modeling human facial to entirely describe facial expression through face image. We consider to variation analysis of the face image using Generalized Procrustes Analysis (GPA) method. GPA is implied for modeling variation of facial expression. We fit our GPA model exact the position of facial skeleton using Active Appearance Model (AAM). AAM is needed for extract shape feature of face image. Also, we use Gabor to get texture information of face image. The facial expression recognition method is based on Support Vector Machine (SVM). We tested our model with CK+ and Jaffe dataset on six basic emotion: anger, disgust, fear, happy, sad, and surprise. Our method gained accuracy 93.58% for CK+ dataset and 94.7% for Jaffe dataset.\",\"PeriodicalId\":6528,\"journal\":{\"name\":\"2017 International Conference on Electrical Engineering and Computer Science (ICECOS)\",\"volume\":\"24 1\",\"pages\":\"154-159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Electrical Engineering and Computer Science (ICECOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECOS.2017.8167123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical Engineering and Computer Science (ICECOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECOS.2017.8167123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

面部表情识别是信号社会处理领域的一个活跃研究领域。目标是区分人类的情感。问题是情绪的相似性、情绪的变异性和通过人脸图像的独立对象性。现有研究采用各种方法对人脸进行建模,通过人脸图像完整地描述人脸表情。本文采用广义普罗斯特分析(GPA)方法对人脸图像进行变异分析。GPA是用来模拟面部表情变化的。我们使用主动外观模型(AAM)来拟合GPA模型精确地定位面部骨架。人脸图像的形状特征提取需要AAM。同时,利用Gabor算法提取人脸图像的纹理信息。人脸表情识别方法基于支持向量机(SVM)。我们用CK+和Jaffe数据集测试了六种基本情绪:愤怒、厌恶、恐惧、快乐、悲伤和惊讶。该方法对CK+数据集的准确率为93.58%,对Jaffe数据集的准确率为94.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shape analysis using generalized procrustes analysis on Active Appearance Model for facial expression recognition
Facial expression recognition is an active research area in the field of signal social processing. The goal is to distinguish human emotion. The problem is similar emotion, variation of emotion, and independent object through face image. The existing research using various method for modeling human facial to entirely describe facial expression through face image. We consider to variation analysis of the face image using Generalized Procrustes Analysis (GPA) method. GPA is implied for modeling variation of facial expression. We fit our GPA model exact the position of facial skeleton using Active Appearance Model (AAM). AAM is needed for extract shape feature of face image. Also, we use Gabor to get texture information of face image. The facial expression recognition method is based on Support Vector Machine (SVM). We tested our model with CK+ and Jaffe dataset on six basic emotion: anger, disgust, fear, happy, sad, and surprise. Our method gained accuracy 93.58% for CK+ dataset and 94.7% for Jaffe dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lightning data mapping of West Java province Android-based application using mobile adhoc network for search and rescue operation during disaster Monitoring system of stand alone solar photovoltaic data Approaches for improving VoIP QoS in WMNs Smart monitoring apps for salvaging neolissochillus thienemanni sumateranus (batak heritage) from extinction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1