MapReduce应用的高效调度框架

Nikos Zacheilas, V. Kalogeraki
{"title":"MapReduce应用的高效调度框架","authors":"Nikos Zacheilas, V. Kalogeraki","doi":"10.1109/ICAC.2015.38","DOIUrl":null,"url":null,"abstract":"Real-time, cost-effective execution of \"Big Data\" applications on MapReduce clusters has been an important goal for many scientists in recent years. The MapReduce paradigm has been widely adopted by major computing companies as a powerful approach for large-scale data analytics. However, running MapReduce workloads in cluster environments has been particularly challenging due to the trade-offs that exist between the need for performance and the corresponding budget cost. Furthermore, the large number of resource configuration parameters exacerbates the problem, as users must manually tune the parameters without knowing their impact on the performance and budget costs. In this paper, we describe our approach to cost-effective scheduling of MapReduce applications. We present an overview of our framework that enables appropriate configuration of parameters to detect cost-efficient resource allocations. Our early experimental results illustrate the working and benefit of our approach.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"37 1","pages":"147-148"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Framework for Cost-Effective Scheduling of MapReduce Applications\",\"authors\":\"Nikos Zacheilas, V. Kalogeraki\",\"doi\":\"10.1109/ICAC.2015.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time, cost-effective execution of \\\"Big Data\\\" applications on MapReduce clusters has been an important goal for many scientists in recent years. The MapReduce paradigm has been widely adopted by major computing companies as a powerful approach for large-scale data analytics. However, running MapReduce workloads in cluster environments has been particularly challenging due to the trade-offs that exist between the need for performance and the corresponding budget cost. Furthermore, the large number of resource configuration parameters exacerbates the problem, as users must manually tune the parameters without knowing their impact on the performance and budget costs. In this paper, we describe our approach to cost-effective scheduling of MapReduce applications. We present an overview of our framework that enables appropriate configuration of parameters to detect cost-efficient resource allocations. Our early experimental results illustrate the working and benefit of our approach.\",\"PeriodicalId\":6643,\"journal\":{\"name\":\"2015 IEEE International Conference on Autonomic Computing\",\"volume\":\"37 1\",\"pages\":\"147-148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Autonomic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAC.2015.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来,在MapReduce集群上实时、高效地执行“大数据”应用程序一直是许多科学家的重要目标。MapReduce范式作为一种强大的大规模数据分析方法,已经被主要的计算公司广泛采用。然而,在集群环境中运行MapReduce工作负载特别具有挑战性,因为需要在性能需求和相应的预算成本之间进行权衡。此外,大量的资源配置参数加剧了这个问题,因为用户必须在不知道它们对性能和预算成本的影响的情况下手动调优参数。在本文中,我们描述了MapReduce应用程序的成本效益调度方法。我们概述了我们的框架,该框架支持适当的参数配置,以检测具有成本效益的资源分配。我们的早期实验结果说明了我们的方法的工作和好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework for Cost-Effective Scheduling of MapReduce Applications
Real-time, cost-effective execution of "Big Data" applications on MapReduce clusters has been an important goal for many scientists in recent years. The MapReduce paradigm has been widely adopted by major computing companies as a powerful approach for large-scale data analytics. However, running MapReduce workloads in cluster environments has been particularly challenging due to the trade-offs that exist between the need for performance and the corresponding budget cost. Furthermore, the large number of resource configuration parameters exacerbates the problem, as users must manually tune the parameters without knowing their impact on the performance and budget costs. In this paper, we describe our approach to cost-effective scheduling of MapReduce applications. We present an overview of our framework that enables appropriate configuration of parameters to detect cost-efficient resource allocations. Our early experimental results illustrate the working and benefit of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Control-Based Approach to Autonomic Performance Management in Computing Systems Trace Analysis for Fault Detection in Application Servers A Programming System for Autonomic Self-Managing Applications A Taxonomy for Self-∗ Properties in Decentralized Autonomic Computing Transparent Autonomization in Composite Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1