K. Sadananda, A. Singh, Iman, M. Osofsky, V. Tourneau, L. E. Richards
{"title":"热等静压对RBa亚2 Cu亚3 O亚7超导体的影响","authors":"K. Sadananda, A. Singh, Iman, M. Osofsky, V. Tourneau, L. E. Richards","doi":"10.1111/J.1551-2916.1988.TB00272.X","DOIUrl":null,"url":null,"abstract":"In an effort to make dense, consolidated superconductors, the hot isostatic pressing process was applied to the RBa{sub 2}Cu{sub 3}O{sub 7} system, where R is a rare-earth element. The authors have demonstrated the applicability of the hot isostatic pressing process to produce a fine-grained consolidated solid which can be cut into any desired form. The grain refinement that occurred during hot isostatic pressing was related to the fracture of coarse-grained particles during pressurization. Hot isostatic pressing combined with post-annealing increased the superconducting onset temperature to >95 K. Because of the grain refinement and the higher {Tc} achieved, the superconductor material processed by hot isostatic pressing is also expected to have higher current density, J{sub c}, than its sintered counterpart. The hot isostatic pressing process was also used successfully for the system Bi-Sr-Ca-Cu-O to make dense, bulk superconducting material.","PeriodicalId":7260,"journal":{"name":"Advanced Ceramic Materials","volume":"8 1","pages":"524-526"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Effect of hot isostatic pressing on RBa sub 2 Cu sub 3 O sub 7 superconductors\",\"authors\":\"K. Sadananda, A. Singh, Iman, M. Osofsky, V. Tourneau, L. E. Richards\",\"doi\":\"10.1111/J.1551-2916.1988.TB00272.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an effort to make dense, consolidated superconductors, the hot isostatic pressing process was applied to the RBa{sub 2}Cu{sub 3}O{sub 7} system, where R is a rare-earth element. The authors have demonstrated the applicability of the hot isostatic pressing process to produce a fine-grained consolidated solid which can be cut into any desired form. The grain refinement that occurred during hot isostatic pressing was related to the fracture of coarse-grained particles during pressurization. Hot isostatic pressing combined with post-annealing increased the superconducting onset temperature to >95 K. Because of the grain refinement and the higher {Tc} achieved, the superconductor material processed by hot isostatic pressing is also expected to have higher current density, J{sub c}, than its sintered counterpart. The hot isostatic pressing process was also used successfully for the system Bi-Sr-Ca-Cu-O to make dense, bulk superconducting material.\",\"PeriodicalId\":7260,\"journal\":{\"name\":\"Advanced Ceramic Materials\",\"volume\":\"8 1\",\"pages\":\"524-526\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Ceramic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.1551-2916.1988.TB00272.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Ceramic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.1551-2916.1988.TB00272.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of hot isostatic pressing on RBa sub 2 Cu sub 3 O sub 7 superconductors
In an effort to make dense, consolidated superconductors, the hot isostatic pressing process was applied to the RBa{sub 2}Cu{sub 3}O{sub 7} system, where R is a rare-earth element. The authors have demonstrated the applicability of the hot isostatic pressing process to produce a fine-grained consolidated solid which can be cut into any desired form. The grain refinement that occurred during hot isostatic pressing was related to the fracture of coarse-grained particles during pressurization. Hot isostatic pressing combined with post-annealing increased the superconducting onset temperature to >95 K. Because of the grain refinement and the higher {Tc} achieved, the superconductor material processed by hot isostatic pressing is also expected to have higher current density, J{sub c}, than its sintered counterpart. The hot isostatic pressing process was also used successfully for the system Bi-Sr-Ca-Cu-O to make dense, bulk superconducting material.