Lee Wai Yee, T. K. Sin, Soong Wai Mun, R. M. Saman
{"title":"等离子体增强化学气相沉积法生长碳纳米管Al/Ni二元催化剂的形貌和粒径分析","authors":"Lee Wai Yee, T. K. Sin, Soong Wai Mun, R. M. Saman","doi":"10.1109/ESCINANO.2010.5701054","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes (CNT) has attracted much attention in recent years due to its unique properties and vast potential in nanotechnology. Over the years, extensive research has been conducted to develop a reliable synthesis methodology to produce CNT. Among many methods for CNT growth, transition metal based catalyst via plasma enhanced chemical vapour deposition (PECVD) is one of the widely adaptable methods for large scale CNT growth.","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":"105 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Morphology and particle size analysis on Al/Ni binary catalyst for carbon nanotube growth through plasma enhanced chemical vapour deposition\",\"authors\":\"Lee Wai Yee, T. K. Sin, Soong Wai Mun, R. M. Saman\",\"doi\":\"10.1109/ESCINANO.2010.5701054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon nanotubes (CNT) has attracted much attention in recent years due to its unique properties and vast potential in nanotechnology. Over the years, extensive research has been conducted to develop a reliable synthesis methodology to produce CNT. Among many methods for CNT growth, transition metal based catalyst via plasma enhanced chemical vapour deposition (PECVD) is one of the widely adaptable methods for large scale CNT growth.\",\"PeriodicalId\":6354,\"journal\":{\"name\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"volume\":\"105 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCINANO.2010.5701054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCINANO.2010.5701054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Morphology and particle size analysis on Al/Ni binary catalyst for carbon nanotube growth through plasma enhanced chemical vapour deposition
Carbon nanotubes (CNT) has attracted much attention in recent years due to its unique properties and vast potential in nanotechnology. Over the years, extensive research has been conducted to develop a reliable synthesis methodology to produce CNT. Among many methods for CNT growth, transition metal based catalyst via plasma enhanced chemical vapour deposition (PECVD) is one of the widely adaptable methods for large scale CNT growth.