Rama Pavan Kumar Varma Indukuri, Rama Murty Raju P., S. Ch., R. S
{"title":"马氏体时效钢激光束焊接对接接头工艺参数优化及数值模拟","authors":"Rama Pavan Kumar Varma Indukuri, Rama Murty Raju P., S. Ch., R. S","doi":"10.15282/ijame.19.2.2022.07.0749","DOIUrl":null,"url":null,"abstract":"Maraging steels are ultra-high strength iron nickel-based alloys which are used in military applications like rocket motor casings, missiles, and ship hulls. In the current work, maraging steels of 250 grade butt joints with 2 mm thickness are welded by using Nd:YAG laser. The experiments were designed and conducted using the L16 orthogonal array. Various welding parameters selected for the current work are laser power, welding speed, and focal position, whereas tensile strength, hardness and depth of penetration were considered as the output responses. The influence of process variables on weld bead morphology was analysed experimentally. The microstructure, mechanical characteristics and numerical analysis of the optimum joint were also investigated. Analysis of variance (ANOVA) was used to determine the effect of different variables on tensile strength and depth of penetration. According to the results, laser power and welding speed are essential factors for tensile strength. The depth of penetration is strongly influenced by welding speed, focal position, and laser power. In order to predict the weld bead, finite element analysis was performed on ABAQUS 3D finite element software. The results reveal that finite element simulation and experimental observations are matched.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"12 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Process Parameters Optimisation and Numerical Simulation of Laser Beam Welded Butt Joints of Maraging Steel\",\"authors\":\"Rama Pavan Kumar Varma Indukuri, Rama Murty Raju P., S. Ch., R. S\",\"doi\":\"10.15282/ijame.19.2.2022.07.0749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maraging steels are ultra-high strength iron nickel-based alloys which are used in military applications like rocket motor casings, missiles, and ship hulls. In the current work, maraging steels of 250 grade butt joints with 2 mm thickness are welded by using Nd:YAG laser. The experiments were designed and conducted using the L16 orthogonal array. Various welding parameters selected for the current work are laser power, welding speed, and focal position, whereas tensile strength, hardness and depth of penetration were considered as the output responses. The influence of process variables on weld bead morphology was analysed experimentally. The microstructure, mechanical characteristics and numerical analysis of the optimum joint were also investigated. Analysis of variance (ANOVA) was used to determine the effect of different variables on tensile strength and depth of penetration. According to the results, laser power and welding speed are essential factors for tensile strength. The depth of penetration is strongly influenced by welding speed, focal position, and laser power. In order to predict the weld bead, finite element analysis was performed on ABAQUS 3D finite element software. The results reveal that finite element simulation and experimental observations are matched.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.2.2022.07.0749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.2.2022.07.0749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Process Parameters Optimisation and Numerical Simulation of Laser Beam Welded Butt Joints of Maraging Steel
Maraging steels are ultra-high strength iron nickel-based alloys which are used in military applications like rocket motor casings, missiles, and ship hulls. In the current work, maraging steels of 250 grade butt joints with 2 mm thickness are welded by using Nd:YAG laser. The experiments were designed and conducted using the L16 orthogonal array. Various welding parameters selected for the current work are laser power, welding speed, and focal position, whereas tensile strength, hardness and depth of penetration were considered as the output responses. The influence of process variables on weld bead morphology was analysed experimentally. The microstructure, mechanical characteristics and numerical analysis of the optimum joint were also investigated. Analysis of variance (ANOVA) was used to determine the effect of different variables on tensile strength and depth of penetration. According to the results, laser power and welding speed are essential factors for tensile strength. The depth of penetration is strongly influenced by welding speed, focal position, and laser power. In order to predict the weld bead, finite element analysis was performed on ABAQUS 3D finite element software. The results reveal that finite element simulation and experimental observations are matched.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.