Q1 Computer Science ACM Sigplan Notices Pub Date : 2018-11-30 DOI:10.1145/3296957.3173180
Amir Hossein Nodehi Sabet, Junqiao Qiu, Zhijia Zhao
{"title":"Tigr","authors":"Amir Hossein Nodehi Sabet, Junqiao Qiu, Zhijia Zhao","doi":"10.1145/3296957.3173180","DOIUrl":null,"url":null,"abstract":"Graph analytics delivers deep knowledge by processing large volumes of highly connected data. In real-world graphs, the degree distribution tends to follow the power law -- a small portion of nodes own a large number of neighbors. The high irregularity of degree distribution acts as a major barrier to their efficient processing on GPU architectures, which are primarily designed for accelerating computations on regular data with SIMD executions. Existing solutions to the inefficiency of GPU-based graph analytics either modify the graph programming abstraction or rely on changes to the low-level thread execution models. The former requires more programming efforts for designing and maintaining graph analytics; while the latter couples with the underlying architectures, making it difficult to adapt as architectures quickly evolve. Unlike prior efforts, this work proposes to address the above fundamental problem at its origin -- the irregular graph data itself. It raises a critical question in irregular graph processing: Is it possible to transform irregular graphs into more regular ones such that the graphs can be processed more efficiently on GPU-like architectures, yet still producing the same results? Inspired by the question, this work introduces Tigr -- a graph transformation framework that can effectively reduce the irregularity of real-world graphs with correctness guarantees for a wide range of graph analytics. To make the transformations practical, Tigr features a lightweight virtual transformation scheme, which can substantially reduce the costs of graph transformations, while preserving the benefits of reduced irregularity. Evaluation on Tigr-based GPU graph processing shows significant and consistent speedup over the state-of-the-art GPU graph processing frameworks for a spectrum of irregular graphs.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3296957.3173180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4

摘要

图形分析通过处理大量高度连接的数据来提供深入的知识。在现实世界的图中,度分布倾向于遵循幂律——一小部分节点拥有大量的邻居。度分布的高度不规则性是它们在GPU架构上高效处理的主要障碍,GPU架构主要用于通过执行SIMD来加速对常规数据的计算。针对基于gpu的图形分析效率低下的现有解决方案,要么修改图形编程抽象,要么依赖于对低级线程执行模型的更改。前者需要更多的编程工作来设计和维护图形分析;而后者与底层体系结构相结合,使得随着体系结构的快速发展而难以适应。与之前的努力不同,这项工作提出了解决上述基本问题的根源-不规则图形数据本身。它提出了不规则图形处理中的一个关键问题:是否有可能将不规则图形转换为更规则的图形,以便在类似gpu的架构上更有效地处理图形,同时仍然产生相同的结果?受这个问题的启发,这项工作引入了Tigr——一个图转换框架,可以有效地减少现实世界图的不规则性,并保证广泛的图分析的正确性。为了使转换切实可行,Tigr提供了一个轻量级的虚拟转换方案,它可以大大降低图转换的成本,同时保留减少不规则性的好处。对基于tigr的GPU图形处理的评估显示,在不规则图形的频谱上,与最先进的GPU图形处理框架相比,具有显著且一致的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tigr
Graph analytics delivers deep knowledge by processing large volumes of highly connected data. In real-world graphs, the degree distribution tends to follow the power law -- a small portion of nodes own a large number of neighbors. The high irregularity of degree distribution acts as a major barrier to their efficient processing on GPU architectures, which are primarily designed for accelerating computations on regular data with SIMD executions. Existing solutions to the inefficiency of GPU-based graph analytics either modify the graph programming abstraction or rely on changes to the low-level thread execution models. The former requires more programming efforts for designing and maintaining graph analytics; while the latter couples with the underlying architectures, making it difficult to adapt as architectures quickly evolve. Unlike prior efforts, this work proposes to address the above fundamental problem at its origin -- the irregular graph data itself. It raises a critical question in irregular graph processing: Is it possible to transform irregular graphs into more regular ones such that the graphs can be processed more efficiently on GPU-like architectures, yet still producing the same results? Inspired by the question, this work introduces Tigr -- a graph transformation framework that can effectively reduce the irregularity of real-world graphs with correctness guarantees for a wide range of graph analytics. To make the transformations practical, Tigr features a lightweight virtual transformation scheme, which can substantially reduce the costs of graph transformations, while preserving the benefits of reduced irregularity. Evaluation on Tigr-based GPU graph processing shows significant and consistent speedup over the state-of-the-art GPU graph processing frameworks for a spectrum of irregular graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Sigplan Notices
ACM Sigplan Notices 工程技术-计算机:软件工程
CiteScore
4.90
自引率
0.00%
发文量
0
审稿时长
2-4 weeks
期刊介绍: The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).
期刊最新文献
Outcomes of Endoscopic Drainage in Children with Pancreatic Fluid Collections: A Systematic Review and Meta-Analysis. Letter from the Chair SEIS Proceedings of the 2018 ACM SIGPLAN International Symposium on Memory Management, ISMM 2018, Philadelphia, PA, USA, June 18, 2018 Proceedings of the 19th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES 2018, Philadelphia, PA, USA, June 19-20, 2018
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1