{"title":"随机微分方程混合效应模型的粒子方法","authors":"Imke Botha, R. Kohn, C. Drovandi","doi":"10.1214/20-ba1216","DOIUrl":null,"url":null,"abstract":"Parameter inference for stochastic differential equation mixed effects models (SDEMEMs) is a challenging problem. Analytical solutions for these models are rarely available, which means that the likelihood is also intractable. In this case, exact inference is possible using the pseudo-marginal method, where the intractable likelihood is replaced by its nonnegative unbiased estimate. A useful application of this idea is particle MCMC, which uses a particle filter estimate of the likelihood. While the exact posterior is targeted by these methods, a naive implementation for SDEMEMs can be highly inefficient. We develop three extensions to the naive approach which exploits specific aspects of SDEMEMs and other advances such as correlated pseudo-marginal methods. We compare these methods on real and simulated data from a tumour xenography study on mice.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Particle Methods for Stochastic Differential Equation Mixed Effects Models\",\"authors\":\"Imke Botha, R. Kohn, C. Drovandi\",\"doi\":\"10.1214/20-ba1216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameter inference for stochastic differential equation mixed effects models (SDEMEMs) is a challenging problem. Analytical solutions for these models are rarely available, which means that the likelihood is also intractable. In this case, exact inference is possible using the pseudo-marginal method, where the intractable likelihood is replaced by its nonnegative unbiased estimate. A useful application of this idea is particle MCMC, which uses a particle filter estimate of the likelihood. While the exact posterior is targeted by these methods, a naive implementation for SDEMEMs can be highly inefficient. We develop three extensions to the naive approach which exploits specific aspects of SDEMEMs and other advances such as correlated pseudo-marginal methods. We compare these methods on real and simulated data from a tumour xenography study on mice.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/20-ba1216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-ba1216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Particle Methods for Stochastic Differential Equation Mixed Effects Models
Parameter inference for stochastic differential equation mixed effects models (SDEMEMs) is a challenging problem. Analytical solutions for these models are rarely available, which means that the likelihood is also intractable. In this case, exact inference is possible using the pseudo-marginal method, where the intractable likelihood is replaced by its nonnegative unbiased estimate. A useful application of this idea is particle MCMC, which uses a particle filter estimate of the likelihood. While the exact posterior is targeted by these methods, a naive implementation for SDEMEMs can be highly inefficient. We develop three extensions to the naive approach which exploits specific aspects of SDEMEMs and other advances such as correlated pseudo-marginal methods. We compare these methods on real and simulated data from a tumour xenography study on mice.