{"title":"使用机器学习的气压传感器的纯电校准","authors":"Hadi Najar","doi":"10.1109/TRANSDUCERS.2019.8808801","DOIUrl":null,"url":null,"abstract":"This paper reports a novel, rapid and economical approach to calibrate barometric micromechanical capacitive pressure sensors via electrical measurement only using a machine learning approach. Conventional calibration approaches that use physical means are time consuming and require specialized equipment. We proposed and experimentally validated an electrical only approach through machine learning to calibrate the pressure sensor over a wide range of pressures. Using this novel approach, the experimental results show an average absolute accuracy of 1.74hPa within 600hPa to 1100hPa pressure range. The typical absolute accuracy falls well within the ±1hPa. This approach reduces the test time by more than 85%.","PeriodicalId":6672,"journal":{"name":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","volume":"43 1","pages":"1977-1980"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Only Calibration of Barometric Pressure Sensors Using Machine Learning\",\"authors\":\"Hadi Najar\",\"doi\":\"10.1109/TRANSDUCERS.2019.8808801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a novel, rapid and economical approach to calibrate barometric micromechanical capacitive pressure sensors via electrical measurement only using a machine learning approach. Conventional calibration approaches that use physical means are time consuming and require specialized equipment. We proposed and experimentally validated an electrical only approach through machine learning to calibrate the pressure sensor over a wide range of pressures. Using this novel approach, the experimental results show an average absolute accuracy of 1.74hPa within 600hPa to 1100hPa pressure range. The typical absolute accuracy falls well within the ±1hPa. This approach reduces the test time by more than 85%.\",\"PeriodicalId\":6672,\"journal\":{\"name\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"volume\":\"43 1\",\"pages\":\"1977-1980\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2019.8808801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2019.8808801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一种新颖、快速、经济的方法,仅使用机器学习方法通过电测量来校准气压微机械电容压力传感器。使用物理手段的传统校准方法既耗时又需要专门的设备。我们提出并通过实验验证了一种通过机器学习来校准压力传感器在大压力范围内的电方法。实验结果表明,该方法在600hPa ~ 1100hPa压力范围内的平均绝对精度为1.74hPa。典型的绝对精度落在±1hPa以内。这种方法将测试时间减少了85%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrical Only Calibration of Barometric Pressure Sensors Using Machine Learning
This paper reports a novel, rapid and economical approach to calibrate barometric micromechanical capacitive pressure sensors via electrical measurement only using a machine learning approach. Conventional calibration approaches that use physical means are time consuming and require specialized equipment. We proposed and experimentally validated an electrical only approach through machine learning to calibrate the pressure sensor over a wide range of pressures. Using this novel approach, the experimental results show an average absolute accuracy of 1.74hPa within 600hPa to 1100hPa pressure range. The typical absolute accuracy falls well within the ±1hPa. This approach reduces the test time by more than 85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Batch Fabrication of Multilayer Polymer Cantilevers with Integrated Hard Tips for High-Speed Atomic Force Microscopy Engineering Tunable Strain Fields in Suspended Graphene by Microelectromechanical Systems Gan Current Transducers for Harsh Environments Harnessing Poisson Effect to Realize Tunable Tunneling Nanogap Electrodes on PDMS Substrates for Strain Sensing Self-Powered, Ultra-Reliable Hydrogen Sensor Exploiting Chemomechanical Nano-Transducer and Solar-Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1