亚甲基杂环化合物的自由基聚合:功能聚合物的合成及其应用

IF 11.1 2区 化学 Q1 POLYMER SCIENCE Polymer Reviews Pub Date : 2023-02-21 DOI:10.1080/15583724.2023.2181819
Zhuoqun Wang, Antoine Debuigne
{"title":"亚甲基杂环化合物的自由基聚合:功能聚合物的合成及其应用","authors":"Zhuoqun Wang, Antoine Debuigne","doi":"10.1080/15583724.2023.2181819","DOIUrl":null,"url":null,"abstract":"Abstract Synthetic polymers sustain a wide range of applications but the quest for further sophistication and functionalization of polymers remains topical to improve their scope and performance. In this respect, the radical polymerization of exo-methylene heterocyclic compounds (MHCs) is attractive. Compared to the classical acyclic vinyl monomers constrained to the vinyl-type polymerization process, MHCs can undergo different polymerization modes, namely the radical ring-retaining polymerization (rRRP) and the radical ring-opening polymerization (rROP). In rRRP, the cyclic group is preserved and inserted as side group of the polymer backbone offering a myriad of post-polymerization modifications whereas functional groups are incorporated within the backbone of linear polymers and confer them some degradability in rROP. Herein, recent advances in the radical polymerization of MHCs as well as the variety of macromolecular structures and applications it offers are highlighted. The reversible deactivation radical polymerization of MHCs leading to well-defined MHC-based macromolecular architectures, including multifunctional, stimuli-responsive and degradable polymers, is also discussed. The review emphasizes the current limitations of the radical polymerization of MHCs as well as future prospects including the development of innovative bio-based MHCs. Overall, the radical polymerization of MCHs represents a powerful macromolecular engineering tool and a broad field of exploration for polymer chemists. Graphical Abstract","PeriodicalId":20326,"journal":{"name":"Polymer Reviews","volume":"11 1","pages":"805 - 851"},"PeriodicalIF":11.1000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Radical Polymerization of Methylene Heterocyclic Compounds: Functional Polymer Synthesis and Applications\",\"authors\":\"Zhuoqun Wang, Antoine Debuigne\",\"doi\":\"10.1080/15583724.2023.2181819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Synthetic polymers sustain a wide range of applications but the quest for further sophistication and functionalization of polymers remains topical to improve their scope and performance. In this respect, the radical polymerization of exo-methylene heterocyclic compounds (MHCs) is attractive. Compared to the classical acyclic vinyl monomers constrained to the vinyl-type polymerization process, MHCs can undergo different polymerization modes, namely the radical ring-retaining polymerization (rRRP) and the radical ring-opening polymerization (rROP). In rRRP, the cyclic group is preserved and inserted as side group of the polymer backbone offering a myriad of post-polymerization modifications whereas functional groups are incorporated within the backbone of linear polymers and confer them some degradability in rROP. Herein, recent advances in the radical polymerization of MHCs as well as the variety of macromolecular structures and applications it offers are highlighted. The reversible deactivation radical polymerization of MHCs leading to well-defined MHC-based macromolecular architectures, including multifunctional, stimuli-responsive and degradable polymers, is also discussed. The review emphasizes the current limitations of the radical polymerization of MHCs as well as future prospects including the development of innovative bio-based MHCs. Overall, the radical polymerization of MCHs represents a powerful macromolecular engineering tool and a broad field of exploration for polymer chemists. Graphical Abstract\",\"PeriodicalId\":20326,\"journal\":{\"name\":\"Polymer Reviews\",\"volume\":\"11 1\",\"pages\":\"805 - 851\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15583724.2023.2181819\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15583724.2023.2181819","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

合成聚合物有着广泛的应用,但对聚合物进一步复杂化和功能化的追求仍然是当前的热点,以提高它们的范围和性能。在这方面,外亚甲基杂环化合物(mhc)的自由基聚合是有吸引力的。与传统的无环乙烯基单体限制在乙烯基型聚合过程中相比,mhc可以进行不同的聚合模式,即自由基保环聚合(rRRP)和自由基开环聚合(rROP)。在rROP中,环基被保留并作为聚合物主链的侧基插入,提供了无数的聚合后修饰,而官能团被纳入线性聚合物的主链中,并赋予它们在rROP中一定的可降解性。本文重点介绍了mhc自由基聚合的最新进展,以及它所提供的各种大分子结构和应用。还讨论了mhc的可逆失活自由基聚合导致明确定义的mhc为基础的大分子结构,包括多功能,刺激响应和可降解的聚合物。综述了目前自由基聚合mhc的局限性以及未来的发展前景,包括创新的生物基mhc的发展。总之,高分子聚合物的自由基聚合是一种强大的大分子工程工具,也是高分子化学家探索的广阔领域。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radical Polymerization of Methylene Heterocyclic Compounds: Functional Polymer Synthesis and Applications
Abstract Synthetic polymers sustain a wide range of applications but the quest for further sophistication and functionalization of polymers remains topical to improve their scope and performance. In this respect, the radical polymerization of exo-methylene heterocyclic compounds (MHCs) is attractive. Compared to the classical acyclic vinyl monomers constrained to the vinyl-type polymerization process, MHCs can undergo different polymerization modes, namely the radical ring-retaining polymerization (rRRP) and the radical ring-opening polymerization (rROP). In rRRP, the cyclic group is preserved and inserted as side group of the polymer backbone offering a myriad of post-polymerization modifications whereas functional groups are incorporated within the backbone of linear polymers and confer them some degradability in rROP. Herein, recent advances in the radical polymerization of MHCs as well as the variety of macromolecular structures and applications it offers are highlighted. The reversible deactivation radical polymerization of MHCs leading to well-defined MHC-based macromolecular architectures, including multifunctional, stimuli-responsive and degradable polymers, is also discussed. The review emphasizes the current limitations of the radical polymerization of MHCs as well as future prospects including the development of innovative bio-based MHCs. Overall, the radical polymerization of MCHs represents a powerful macromolecular engineering tool and a broad field of exploration for polymer chemists. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Reviews
Polymer Reviews 工程技术-高分子科学
CiteScore
24.80
自引率
0.80%
发文量
21
审稿时长
6 months
期刊介绍: Polymer Reviews is a reputable publication that focuses on timely issues within the field of macromolecular science and engineering. The journal features high-quality reviews that have been specifically curated by experts in the field. Topics of particular importance include biomedical applications, organic electronics and photonics, nanostructures, micro- and nano-fabrication, biological molecules (such as DNA, proteins, and carbohydrates), polymers for renewable energy and environmental applications, and interdisciplinary intersections involving polymers. The articles in Polymer Reviews fall into two main categories. Some articles offer comprehensive and expansive overviews of a particular subject, while others zero in on the author's own research and situate it within the broader scientific landscape. In both types of articles, the aim is to provide readers with valuable insights and advancements in the field of macromolecular science and engineering.
期刊最新文献
Poly-Ether-Ether-Ketone (PEEK) Biomaterials and Composites: Challenges, Progress, and Opportunities Research Progress in Polymer Electrolytes for Electrochromic Devices Comprehensive Review on the Synthesis, Properties and Applications of Nanocomposite Contact Lenses Recent Development and Advances on Polysaccharide Composite Scaffolds for Dental and Dentoalveolar Tissue Regeneration Nonlinear Supramolecular Polymers: From Controlled Synthesis, Tunable Self-Assembly Toward Diverse Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1