神经网络与四种统计分类器在肝小灶性病变CT诊断中的应用

D. Cavouras, P. Prassopoulos, Gregory Karangellis, M. Raissaki, L. Kostaridou, G. Panayiotakis
{"title":"神经网络与四种统计分类器在肝小灶性病变CT诊断中的应用","authors":"D. Cavouras, P. Prassopoulos, Gregory Karangellis, M. Raissaki, L. Kostaridou, G. Panayiotakis","doi":"10.1109/IEMBS.1996.652747","DOIUrl":null,"url":null,"abstract":"Differential diagnosis of hypodense liver lesions on CT is a common radiological problem. The aim of this study was to apply image analysis methods on non-enhanced CT images for discriminating small hemangiomas, the most common non-cystic benign lesion, from metastases, which represent the vast majority of malignant hepatic lesions. Twenty textural features were calculated from the CT density matrix of 20 hemangiomas and 36 liver metastases and were used to train a multilayer perceptron neural network classifier and four statistical classifiers. The neural network exhibited the highest classification accuracy (83.9%) employing 3 textural features (kurtosis, angular second moment, and inverse difference moment), 2 hidden layers and 4 hidden layer nodes. The diagnostic accuracy of CT in characterizing small hypodense liver lesions may be improved by the application of image analysis methods employing a multilayer neural network classifier.","PeriodicalId":20427,"journal":{"name":"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"17 1","pages":"1145-1146 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Application of a neural network and four statistical classifiers in characterizing small focal liver lesions on CT\",\"authors\":\"D. Cavouras, P. Prassopoulos, Gregory Karangellis, M. Raissaki, L. Kostaridou, G. Panayiotakis\",\"doi\":\"10.1109/IEMBS.1996.652747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential diagnosis of hypodense liver lesions on CT is a common radiological problem. The aim of this study was to apply image analysis methods on non-enhanced CT images for discriminating small hemangiomas, the most common non-cystic benign lesion, from metastases, which represent the vast majority of malignant hepatic lesions. Twenty textural features were calculated from the CT density matrix of 20 hemangiomas and 36 liver metastases and were used to train a multilayer perceptron neural network classifier and four statistical classifiers. The neural network exhibited the highest classification accuracy (83.9%) employing 3 textural features (kurtosis, angular second moment, and inverse difference moment), 2 hidden layers and 4 hidden layer nodes. The diagnostic accuracy of CT in characterizing small hypodense liver lesions may be improved by the application of image analysis methods employing a multilayer neural network classifier.\",\"PeriodicalId\":20427,\"journal\":{\"name\":\"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"17 1\",\"pages\":\"1145-1146 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1996.652747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1996.652747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

低密度肝脏病变的CT鉴别诊断是一个常见的放射学问题。本研究的目的是应用图像分析方法对非增强CT图像进行鉴别,小血管瘤是最常见的非囊性良性病变,而小血管瘤是绝大多数肝脏恶性病变的转移灶。从20个血管瘤和36个肝转移瘤的CT密度矩阵中计算出20个纹理特征,并用于训练多层感知器神经网络分类器和4个统计分类器。采用3个纹理特征(峰度、角秒矩和逆差矩)、2个隐藏层和4个隐藏层节点的神经网络分类准确率最高,达到83.9%。应用多层神经网络分类器的图像分析方法可以提高CT对小密度肝病变的诊断准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of a neural network and four statistical classifiers in characterizing small focal liver lesions on CT
Differential diagnosis of hypodense liver lesions on CT is a common radiological problem. The aim of this study was to apply image analysis methods on non-enhanced CT images for discriminating small hemangiomas, the most common non-cystic benign lesion, from metastases, which represent the vast majority of malignant hepatic lesions. Twenty textural features were calculated from the CT density matrix of 20 hemangiomas and 36 liver metastases and were used to train a multilayer perceptron neural network classifier and four statistical classifiers. The neural network exhibited the highest classification accuracy (83.9%) employing 3 textural features (kurtosis, angular second moment, and inverse difference moment), 2 hidden layers and 4 hidden layer nodes. The diagnostic accuracy of CT in characterizing small hypodense liver lesions may be improved by the application of image analysis methods employing a multilayer neural network classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transcutaneous biochemical substance monitoring based on biosensors-blood glucose and lactate Is the human arm made of tunable springs? Knowledge-based medical image registration Approaches for restoring elbow extension in tetraplegia: muscle tendon transfer and functional neuromuscular stimulation Phase plane analysis of isovolumic relaxation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1