多项logit模型下无能力分类优化的随机逼近

Yannik Peeters, Arnoud V. den Boer
{"title":"多项logit模型下无能力分类优化的随机逼近","authors":"Yannik Peeters, Arnoud V. den Boer","doi":"10.1002/nav.22068","DOIUrl":null,"url":null,"abstract":"We consider dynamic assortment optimization with incomplete information under the uncapacitated multinomial logit choice model. We propose an anytime stochastic approximation policy and prove that the regret—the cumulative expected revenue loss caused by offering suboptimal assortments—after T$$ T $$ time periods is bounded by T$$ \\sqrt{T} $$ times a constant that is independent of the number of products. In addition, we prove a matching lower bound on the regret for any policy that is valid for arbitrary model parameters—slightly generalizing a recent regret lower bound derived for specific revenue parameters. Numerical illustrations suggest that our policy outperforms alternatives by a significant margin when T$$ T $$ and the number of products N$$ N $$ are not too small.","PeriodicalId":19120,"journal":{"name":"Naval Research Logistics (NRL)","volume":"31 1","pages":"927 - 938"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic approximation for uncapacitated assortment optimization under the multinomial logit model\",\"authors\":\"Yannik Peeters, Arnoud V. den Boer\",\"doi\":\"10.1002/nav.22068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider dynamic assortment optimization with incomplete information under the uncapacitated multinomial logit choice model. We propose an anytime stochastic approximation policy and prove that the regret—the cumulative expected revenue loss caused by offering suboptimal assortments—after T$$ T $$ time periods is bounded by T$$ \\\\sqrt{T} $$ times a constant that is independent of the number of products. In addition, we prove a matching lower bound on the regret for any policy that is valid for arbitrary model parameters—slightly generalizing a recent regret lower bound derived for specific revenue parameters. Numerical illustrations suggest that our policy outperforms alternatives by a significant margin when T$$ T $$ and the number of products N$$ N $$ are not too small.\",\"PeriodicalId\":19120,\"journal\":{\"name\":\"Naval Research Logistics (NRL)\",\"volume\":\"31 1\",\"pages\":\"927 - 938\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naval Research Logistics (NRL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/nav.22068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics (NRL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nav.22068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在无能力多项logit选择模型下,研究了具有不完全信息的动态分类优化问题。我们提出了一个随时随机逼近策略,并证明了T $$ T $$时间段后的遗憾-由提供次优分类引起的累积预期收入损失由T $$ \sqrt{T} $$乘以一个与产品数量无关的常数所限制。此外,我们证明了对任意模型参数有效的任何策略的后悔下界的匹配下界-稍微推广了最近为特定收益参数导出的后悔下界。数值实例表明,当T $$ T $$和产品数量N $$ N $$不是太小时,我们的政策明显优于替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic approximation for uncapacitated assortment optimization under the multinomial logit model
We consider dynamic assortment optimization with incomplete information under the uncapacitated multinomial logit choice model. We propose an anytime stochastic approximation policy and prove that the regret—the cumulative expected revenue loss caused by offering suboptimal assortments—after T$$ T $$ time periods is bounded by T$$ \sqrt{T} $$ times a constant that is independent of the number of products. In addition, we prove a matching lower bound on the regret for any policy that is valid for arbitrary model parameters—slightly generalizing a recent regret lower bound derived for specific revenue parameters. Numerical illustrations suggest that our policy outperforms alternatives by a significant margin when T$$ T $$ and the number of products N$$ N $$ are not too small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assigning parcel destinations to drop‐off points in a congested robotic sorting system An optimization‐based Monte Carlo method for estimating the two‐terminal survival signature of networks with two component classes A two‐stage adaptive robust model for designing a reliable blood supply chain network with disruption considerations in disaster situations Firm decisions and government subsidies in a supply chain with consumer surplus consideration Optimal emission regulation under market uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1