卡尔曼滤波器的判别训练

P. Abbeel, Adam Coates, Michael Montemerlo, A. Ng, S. Thrun
{"title":"卡尔曼滤波器的判别训练","authors":"P. Abbeel, Adam Coates, Michael Montemerlo, A. Ng, S. Thrun","doi":"10.15607/RSS.2005.I.038","DOIUrl":null,"url":null,"abstract":"Kalman filters are a workhorse of robotics and are routinely used in state-estimation problems. However, their performance critically depends on a large number of modeling parameters which can be very difficult to obtain, and are often set via significant manual tweaking and at a great cost of engineering time. In this paper, we propose a method for automatically learning the noise parameters of a Kalman filter. We also demonstrate on a commercial wheeled rover that our Kalman filter’s learned noise covariance parameters—obtained quickly and fully automatically—significantly outperform an earlier, carefully and laboriously hand-designed one.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"15 1","pages":"289-296"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"141","resultStr":"{\"title\":\"Discriminative Training of Kalman Filters\",\"authors\":\"P. Abbeel, Adam Coates, Michael Montemerlo, A. Ng, S. Thrun\",\"doi\":\"10.15607/RSS.2005.I.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kalman filters are a workhorse of robotics and are routinely used in state-estimation problems. However, their performance critically depends on a large number of modeling parameters which can be very difficult to obtain, and are often set via significant manual tweaking and at a great cost of engineering time. In this paper, we propose a method for automatically learning the noise parameters of a Kalman filter. We also demonstrate on a commercial wheeled rover that our Kalman filter’s learned noise covariance parameters—obtained quickly and fully automatically—significantly outperform an earlier, carefully and laboriously hand-designed one.\",\"PeriodicalId\":87357,\"journal\":{\"name\":\"Robotics science and systems : online proceedings\",\"volume\":\"15 1\",\"pages\":\"289-296\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"141\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics science and systems : online proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/RSS.2005.I.038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 141

摘要

卡尔曼滤波器是机器人技术的重要组成部分,通常用于状态估计问题。然而,它们的性能严重依赖于大量建模参数,这些参数很难获得,并且通常需要通过大量的手动调整来设置,并且需要花费大量的工程时间。本文提出了一种自动学习卡尔曼滤波器噪声参数的方法。我们还在一辆商用轮式漫游车上证明,我们的卡尔曼滤波器学习到的噪声协方差参数(快速且完全自动地获得)显著优于先前精心且费力地手工设计的卡尔曼滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discriminative Training of Kalman Filters
Kalman filters are a workhorse of robotics and are routinely used in state-estimation problems. However, their performance critically depends on a large number of modeling parameters which can be very difficult to obtain, and are often set via significant manual tweaking and at a great cost of engineering time. In this paper, we propose a method for automatically learning the noise parameters of a Kalman filter. We also demonstrate on a commercial wheeled rover that our Kalman filter’s learned noise covariance parameters—obtained quickly and fully automatically—significantly outperform an earlier, carefully and laboriously hand-designed one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
期刊最新文献
Toward Certifiable Motion Planning for Medical Steerable Needles. Latent Belief Space Motion Planning under Cost, Dynamics, and Intent Uncertainty Efficient Parametric Multi-Fidelity Surface Mapping Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots. Toward Asymptotically-Optimal Inspection Planning via Efficient Near-Optimal Graph Search.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1