热流曲线近似精度斗争中的元启发式优化算法

P. Opěla, I. Schindler, S. Rusz, V. Ševčák, I. Mamuzic
{"title":"热流曲线近似精度斗争中的元启发式优化算法","authors":"P. Opěla, I. Schindler, S. Rusz, V. Ševčák, I. Mamuzic","doi":"10.37904/metal.2020.3466","DOIUrl":null,"url":null,"abstract":"A hot flow curve approximation performed via flow stress models as well as artificial neural networks requires precisely estimated constants. This estimation is in the case of highly-nonlinear issues often solved via gradient optimization algorithms. Nevertheless, by natural processes or physical laws inspired approaches (metaheuristic algorithms) are also of high interest. In the submitted manuscript, three selected metaheuristic algorithms were compared under the approximation of an experimental hot flow curve dataset via the wellknown Hensel-Spittel relationship. One often used gradient algorithm was also included into this comparison. Results have showed that the metaheuristic algorithms are useful if such complex approximation model is applied and no estimate of material constants from a previous approximation issue is used. On the other hand, if this estimation exists, the gradient algorithms should provide a better solution.","PeriodicalId":21337,"journal":{"name":"Revue De Metallurgie-cahiers D Informations Techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE METAHEURISTIC OPTIMIZATION ALGORITHMS IN THE STRUGGLE FOR THE HOT FLOW CURVE APPROXIMATION ACCURACY\",\"authors\":\"P. Opěla, I. Schindler, S. Rusz, V. Ševčák, I. Mamuzic\",\"doi\":\"10.37904/metal.2020.3466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hot flow curve approximation performed via flow stress models as well as artificial neural networks requires precisely estimated constants. This estimation is in the case of highly-nonlinear issues often solved via gradient optimization algorithms. Nevertheless, by natural processes or physical laws inspired approaches (metaheuristic algorithms) are also of high interest. In the submitted manuscript, three selected metaheuristic algorithms were compared under the approximation of an experimental hot flow curve dataset via the wellknown Hensel-Spittel relationship. One often used gradient algorithm was also included into this comparison. Results have showed that the metaheuristic algorithms are useful if such complex approximation model is applied and no estimate of material constants from a previous approximation issue is used. On the other hand, if this estimation exists, the gradient algorithms should provide a better solution.\",\"PeriodicalId\":21337,\"journal\":{\"name\":\"Revue De Metallurgie-cahiers D Informations Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue De Metallurgie-cahiers D Informations Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37904/metal.2020.3466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue De Metallurgie-cahiers D Informations Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37904/metal.2020.3466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过流动应力模型和人工神经网络进行的热流曲线近似需要精确估计常数。这种估计是在高度非线性问题的情况下,通常通过梯度优化算法来解决。然而,由自然过程或物理定律启发的方法(元启发式算法)也引起了人们的高度兴趣。在提交的手稿中,通过著名的Hensel-Spittel关系,在实验热流曲线数据集的近似下,比较了三种选定的元启发式算法。一种常用的梯度算法也被纳入到这个比较中。结果表明,如果应用这种复杂的近似模型,并且不使用先前近似问题的材料常数估计,则元启发式算法是有用的。另一方面,如果存在这种估计,梯度算法应该提供更好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ON THE METAHEURISTIC OPTIMIZATION ALGORITHMS IN THE STRUGGLE FOR THE HOT FLOW CURVE APPROXIMATION ACCURACY
A hot flow curve approximation performed via flow stress models as well as artificial neural networks requires precisely estimated constants. This estimation is in the case of highly-nonlinear issues often solved via gradient optimization algorithms. Nevertheless, by natural processes or physical laws inspired approaches (metaheuristic algorithms) are also of high interest. In the submitted manuscript, three selected metaheuristic algorithms were compared under the approximation of an experimental hot flow curve dataset via the wellknown Hensel-Spittel relationship. One often used gradient algorithm was also included into this comparison. Results have showed that the metaheuristic algorithms are useful if such complex approximation model is applied and no estimate of material constants from a previous approximation issue is used. On the other hand, if this estimation exists, the gradient algorithms should provide a better solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 months
期刊最新文献
Preparation and performance analysis of gas-quenched steel slag beads Abnormal toughness characteristics and fracture model in simulated welding HAZ of 5%Ni Steel Measurement of the steady state tearing in thin sheets using the contactless system Evaluation of carbothermic processing for mixed discarded lithium-ion batteries Influence of Nb2O5 and basicity on the viscosity and structure of CaO-SiO2-Nb2O5-CeO2-CaF2 slag system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1