{"title":"基于自抗扰控制的伺服阀控液压马达系统研究","authors":"Zhijie Duan, C. Sun, Jipeng Li, Yin Tan","doi":"10.1177/00202940231194115","DOIUrl":null,"url":null,"abstract":"According to the unstable and nonlinear performances of the servo valve-controlled hydraulic motor, classical control methods based on linear theory are gradually unable to meet the high-performance requirements of the system. Using the servo valve-controlled hydraulic motor based on the third-order active disturbance rejection control (ADRC) to improve the dynamic performance of the system is feasible. The mathematical model and the simulation model of the third-order ADRC for the servo valve-controlled hydraulic motor system are established respectively. For the phase lag caused by the third-order ADRC controller, the control performance of the ADRC controller is significantly improved using the advance forecast. The simulation experiment results show that the designed ADRC controller has good tracking performance and stronger robustness of the system than the traditional PID controller.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on servo valve-controlled hydraulic motor system based on active disturbance rejection control\",\"authors\":\"Zhijie Duan, C. Sun, Jipeng Li, Yin Tan\",\"doi\":\"10.1177/00202940231194115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the unstable and nonlinear performances of the servo valve-controlled hydraulic motor, classical control methods based on linear theory are gradually unable to meet the high-performance requirements of the system. Using the servo valve-controlled hydraulic motor based on the third-order active disturbance rejection control (ADRC) to improve the dynamic performance of the system is feasible. The mathematical model and the simulation model of the third-order ADRC for the servo valve-controlled hydraulic motor system are established respectively. For the phase lag caused by the third-order ADRC controller, the control performance of the ADRC controller is significantly improved using the advance forecast. The simulation experiment results show that the designed ADRC controller has good tracking performance and stronger robustness of the system than the traditional PID controller.\",\"PeriodicalId\":18375,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231194115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231194115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on servo valve-controlled hydraulic motor system based on active disturbance rejection control
According to the unstable and nonlinear performances of the servo valve-controlled hydraulic motor, classical control methods based on linear theory are gradually unable to meet the high-performance requirements of the system. Using the servo valve-controlled hydraulic motor based on the third-order active disturbance rejection control (ADRC) to improve the dynamic performance of the system is feasible. The mathematical model and the simulation model of the third-order ADRC for the servo valve-controlled hydraulic motor system are established respectively. For the phase lag caused by the third-order ADRC controller, the control performance of the ADRC controller is significantly improved using the advance forecast. The simulation experiment results show that the designed ADRC controller has good tracking performance and stronger robustness of the system than the traditional PID controller.