{"title":"地下水资源优化配置下百泉泉地区地下水动态条件模拟","authors":"Kaidi Yan, Demin Liu","doi":"10.2166/ws.2023.179","DOIUrl":null,"url":null,"abstract":"\n Xingtai, once a famous city for its spring groups in history, has become one of the regions in the country where water resources are in high demand due to the long-term over-exploitation of groundwater resources. In the region where the springs in the area have dried up and been cutting off over the years, including Baiquan and Dahuo. In order to allocate the amount of water diverted from the Middle Section of the South-North Water Diversion Project reasonably, to effectively make the springs re-rushing and restore the groundwater level, this research established a numerical groundwater model based on the hydrogeological conditions of the study area. The calculated model is used to discuss the hydrodynamical patterns changes and predict the flow rate of spring groups under different allocations of supplement diversion schemes quantifiably. It was found that the scheme of using the amount of river diversion to rehabilitate the Xingtai urban funnel was most conducive to the recovery of groundwater levels in the spring groups, which is due to the reduction in groundwater extraction and has reduced the influence range of the urban funnel and improved the hydrodynamic conditions in the northern preferential runoff zone. The results have demonstrated the feasibility of re-rushing the spring groups.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":"2015 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of groundwater dynamic conditions in the Baiquan spring region under optimal groundwater resource allocation\",\"authors\":\"Kaidi Yan, Demin Liu\",\"doi\":\"10.2166/ws.2023.179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Xingtai, once a famous city for its spring groups in history, has become one of the regions in the country where water resources are in high demand due to the long-term over-exploitation of groundwater resources. In the region where the springs in the area have dried up and been cutting off over the years, including Baiquan and Dahuo. In order to allocate the amount of water diverted from the Middle Section of the South-North Water Diversion Project reasonably, to effectively make the springs re-rushing and restore the groundwater level, this research established a numerical groundwater model based on the hydrogeological conditions of the study area. The calculated model is used to discuss the hydrodynamical patterns changes and predict the flow rate of spring groups under different allocations of supplement diversion schemes quantifiably. It was found that the scheme of using the amount of river diversion to rehabilitate the Xingtai urban funnel was most conducive to the recovery of groundwater levels in the spring groups, which is due to the reduction in groundwater extraction and has reduced the influence range of the urban funnel and improved the hydrodynamic conditions in the northern preferential runoff zone. The results have demonstrated the feasibility of re-rushing the spring groups.\",\"PeriodicalId\":17553,\"journal\":{\"name\":\"Journal of Water Supply Research and Technology-aqua\",\"volume\":\"2015 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply Research and Technology-aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2023.179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Simulation of groundwater dynamic conditions in the Baiquan spring region under optimal groundwater resource allocation
Xingtai, once a famous city for its spring groups in history, has become one of the regions in the country where water resources are in high demand due to the long-term over-exploitation of groundwater resources. In the region where the springs in the area have dried up and been cutting off over the years, including Baiquan and Dahuo. In order to allocate the amount of water diverted from the Middle Section of the South-North Water Diversion Project reasonably, to effectively make the springs re-rushing and restore the groundwater level, this research established a numerical groundwater model based on the hydrogeological conditions of the study area. The calculated model is used to discuss the hydrodynamical patterns changes and predict the flow rate of spring groups under different allocations of supplement diversion schemes quantifiably. It was found that the scheme of using the amount of river diversion to rehabilitate the Xingtai urban funnel was most conducive to the recovery of groundwater levels in the spring groups, which is due to the reduction in groundwater extraction and has reduced the influence range of the urban funnel and improved the hydrodynamic conditions in the northern preferential runoff zone. The results have demonstrated the feasibility of re-rushing the spring groups.
期刊介绍:
Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.