菌根、蘑菇和韩国的研究动向

G. An, Jae-Han Cho, Jae-Gu Han
{"title":"菌根、蘑菇和韩国的研究动向","authors":"G. An, Jae-Han Cho, Jae-Gu Han","doi":"10.14480/JM.2020.18.1.1","DOIUrl":null,"url":null,"abstract":"Mycorrhiza refers to the association between a plant and a fungus colonizing the cortical tissue of the plant’s roots during periods of active plant growth. The benefits afforded by plants from mycorrhizal symbioses can be characterized either agronomically, based on increased growth and yield, or ecologically, based on improved fitness (i.e., reproductive ability). In either case, the benefit accrues primarily because mycorrhizal fungi form a critical linkage between plant roots and the soil. The soilborne or extramatrical hyphae take up nutrients from the soil solution and transport them to the root. This mycorrhizaemediated mechanism increases the effective absorptive surface area of the plant. There are seven major types of mycorrhizae along with mycoheterotrophy: endomycorrhizae (arbuscular mycorrhizae, AM), ectomycorrhizae (EM), ectendomycorrhizae, monotropoid, arbutoid, orchid, and ericoid. Endomycorrhizal fungi form arbuscules or highly branched structures within root cortical cells, giving rise to arbuscular mycorrhiza, which may produce extensive extramatrical hyphae and significantly increase phosphorus inflow rates in the plants they colonize. Ectomycorrhizal fungi may produce large quantities of hyphae on the root and in the soil; these hyphae play a role in absorption and translocation of inorganic nutrients and water, and also release nutrients from litter layers by producing enzymes involved in mineralization of organic matters. Over 4,000 fungal species, primarily belonging to Basidiomycotina and to a lesser extent Ascomycotina, are able to form ectomycorrhizae. Many of these fungi produce various mushrooms on the forest floor that are traded at a high price. In this paper, we discuss the benefits, nutrient cycles, and artificial cultivation of mycorrhizae in Korea.","PeriodicalId":16539,"journal":{"name":"Journal of Mushroom","volume":"60 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mycorrhizae, mushrooms, and research trends in Korea\",\"authors\":\"G. An, Jae-Han Cho, Jae-Gu Han\",\"doi\":\"10.14480/JM.2020.18.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mycorrhiza refers to the association between a plant and a fungus colonizing the cortical tissue of the plant’s roots during periods of active plant growth. The benefits afforded by plants from mycorrhizal symbioses can be characterized either agronomically, based on increased growth and yield, or ecologically, based on improved fitness (i.e., reproductive ability). In either case, the benefit accrues primarily because mycorrhizal fungi form a critical linkage between plant roots and the soil. The soilborne or extramatrical hyphae take up nutrients from the soil solution and transport them to the root. This mycorrhizaemediated mechanism increases the effective absorptive surface area of the plant. There are seven major types of mycorrhizae along with mycoheterotrophy: endomycorrhizae (arbuscular mycorrhizae, AM), ectomycorrhizae (EM), ectendomycorrhizae, monotropoid, arbutoid, orchid, and ericoid. Endomycorrhizal fungi form arbuscules or highly branched structures within root cortical cells, giving rise to arbuscular mycorrhiza, which may produce extensive extramatrical hyphae and significantly increase phosphorus inflow rates in the plants they colonize. Ectomycorrhizal fungi may produce large quantities of hyphae on the root and in the soil; these hyphae play a role in absorption and translocation of inorganic nutrients and water, and also release nutrients from litter layers by producing enzymes involved in mineralization of organic matters. Over 4,000 fungal species, primarily belonging to Basidiomycotina and to a lesser extent Ascomycotina, are able to form ectomycorrhizae. Many of these fungi produce various mushrooms on the forest floor that are traded at a high price. In this paper, we discuss the benefits, nutrient cycles, and artificial cultivation of mycorrhizae in Korea.\",\"PeriodicalId\":16539,\"journal\":{\"name\":\"Journal of Mushroom\",\"volume\":\"60 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mushroom\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14480/JM.2020.18.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mushroom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14480/JM.2020.18.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

菌根是指植物和真菌之间的联系,在植物活跃生长期间,真菌定植在植物根的皮质组织中。菌根共生给植物带来的好处,既可以在农学上以生长和产量的增加为基础,也可以在生态学上以适应性(即繁殖能力)的提高为基础。在任何一种情况下,受益主要是因为菌根真菌在植物根系和土壤之间形成了关键的联系。土生或外生菌丝从土壤溶液中吸收养分并将其输送到根部。这种菌根介导的机制增加了植物的有效吸收表面积。与分枝异养菌共生的菌根主要有七种类型:内生菌根(丛枝菌根,AM)、外生菌根(EM)、外生菌根、单拟菌根、熊果菌根、兰花菌根和ericoid。菌根内真菌在根皮质细胞内形成丛枝或高度分枝的结构,产生丛枝菌根。丛枝菌根可以产生大量的胞外菌丝,并显著增加其定殖植物的磷流入速率。外生菌根真菌可在根部和土壤中产生大量菌丝;这些菌丝具有吸收和转运无机养分和水分的作用,并通过产生参与有机质矿化的酶从凋落物层释放养分。超过4000种真菌,主要属于担子菌门和较小程度的子囊菌门,能够形成外生菌根。这些真菌中的许多在森林地面上产生各种蘑菇,这些蘑菇可以卖到很高的价格。本文讨论了韩国菌根的效益、营养循环和人工栽培。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mycorrhizae, mushrooms, and research trends in Korea
Mycorrhiza refers to the association between a plant and a fungus colonizing the cortical tissue of the plant’s roots during periods of active plant growth. The benefits afforded by plants from mycorrhizal symbioses can be characterized either agronomically, based on increased growth and yield, or ecologically, based on improved fitness (i.e., reproductive ability). In either case, the benefit accrues primarily because mycorrhizal fungi form a critical linkage between plant roots and the soil. The soilborne or extramatrical hyphae take up nutrients from the soil solution and transport them to the root. This mycorrhizaemediated mechanism increases the effective absorptive surface area of the plant. There are seven major types of mycorrhizae along with mycoheterotrophy: endomycorrhizae (arbuscular mycorrhizae, AM), ectomycorrhizae (EM), ectendomycorrhizae, monotropoid, arbutoid, orchid, and ericoid. Endomycorrhizal fungi form arbuscules or highly branched structures within root cortical cells, giving rise to arbuscular mycorrhiza, which may produce extensive extramatrical hyphae and significantly increase phosphorus inflow rates in the plants they colonize. Ectomycorrhizal fungi may produce large quantities of hyphae on the root and in the soil; these hyphae play a role in absorption and translocation of inorganic nutrients and water, and also release nutrients from litter layers by producing enzymes involved in mineralization of organic matters. Over 4,000 fungal species, primarily belonging to Basidiomycotina and to a lesser extent Ascomycotina, are able to form ectomycorrhizae. Many of these fungi produce various mushrooms on the forest floor that are traded at a high price. In this paper, we discuss the benefits, nutrient cycles, and artificial cultivation of mycorrhizae in Korea.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breeding of a new cultivar 'Dadam' for Lentinula edodes sawdust cultivation Effects of quality grade, trimming, and packaging method on shelf life of king oyster mushrooms Quality characteristics of spread jam using low-salt Lentinula edodes soybean paste Evaluation of biological activities of extracts of Korean wild mushrooms Changes in antioxidant activity of processed edible mushrooms stored at room temperature and low temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1