{"title":"嵌段共聚物微相分离的动力学理论","authors":"E. Aero, S. Vakulenko, A. Vilesov","doi":"10.1051/JPHYS:0199000510190220500","DOIUrl":null,"url":null,"abstract":"A semiphenomenological theory that has the advantage of taking into account nonlinear and nonlocal contributions in the free energy for microphase separation of block copolymers is proposed. A kinetic nonlinear equation defining the process of structure formation from a melt is obtained, and its analytical solution at the melt-structure transition temperature is examined. In this region, the structure formation proceeds in two stages. The first one is characterized by damping of all but stable Fourier-components of density distribution and the second, by stabilization of the amplitude of the distribution. Characteristic times of these processes are estimated. The applied approach allows a comparatively simple definition of lamellar, hexagonal and body-centered cubic structures near Ts. Equilibrium structures at T ~ Ts are described as well.","PeriodicalId":14747,"journal":{"name":"Journal De Physique","volume":"28 1","pages":"2205-2226"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Kinetic theory of microphase separation in block copolymers\",\"authors\":\"E. Aero, S. Vakulenko, A. Vilesov\",\"doi\":\"10.1051/JPHYS:0199000510190220500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A semiphenomenological theory that has the advantage of taking into account nonlinear and nonlocal contributions in the free energy for microphase separation of block copolymers is proposed. A kinetic nonlinear equation defining the process of structure formation from a melt is obtained, and its analytical solution at the melt-structure transition temperature is examined. In this region, the structure formation proceeds in two stages. The first one is characterized by damping of all but stable Fourier-components of density distribution and the second, by stabilization of the amplitude of the distribution. Characteristic times of these processes are estimated. The applied approach allows a comparatively simple definition of lamellar, hexagonal and body-centered cubic structures near Ts. Equilibrium structures at T ~ Ts are described as well.\",\"PeriodicalId\":14747,\"journal\":{\"name\":\"Journal De Physique\",\"volume\":\"28 1\",\"pages\":\"2205-2226\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYS:0199000510190220500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYS:0199000510190220500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetic theory of microphase separation in block copolymers
A semiphenomenological theory that has the advantage of taking into account nonlinear and nonlocal contributions in the free energy for microphase separation of block copolymers is proposed. A kinetic nonlinear equation defining the process of structure formation from a melt is obtained, and its analytical solution at the melt-structure transition temperature is examined. In this region, the structure formation proceeds in two stages. The first one is characterized by damping of all but stable Fourier-components of density distribution and the second, by stabilization of the amplitude of the distribution. Characteristic times of these processes are estimated. The applied approach allows a comparatively simple definition of lamellar, hexagonal and body-centered cubic structures near Ts. Equilibrium structures at T ~ Ts are described as well.