{"title":"用于彩色图像分析的精确四元数极调和变换","authors":"Lina Zhang, Yu Sang, D. Dai","doi":"10.1155/2021/7162779","DOIUrl":null,"url":null,"abstract":"Polar harmonic transforms (PHTs) have been applied in pattern recognition and image analysis. But the current computational framework of PHTs has two main demerits. First, some significant color information may be lost during color image processing in conventional methods because they are based on RGB decomposition or graying. Second, PHTs are influenced by geometric errors and numerical integration errors, which can be seen from image reconstruction errors. This paper presents a novel computational framework of quaternion polar harmonic transforms (QPHTs), namely, accurate QPHTs (AQPHTs). First, to holistically handle color images, quaternion-based PHTs are introduced by using the algebra of quaternions. Second, the Gaussian numerical integration is adopted for geometric and numerical error reduction. When compared with CNNs (convolutional neural networks)-based methods (i.e., VGG16) on the Oxford5K dataset, our AQPHT achieves better performance of scaling invariant representation. Moreover, when evaluated on standard image retrieval benchmarks, our AQPHT using smaller dimension of feature vector achieves comparable results with CNNs-based methods and outperforms the hand craft-based methods by 9.6% w.r.t mAP on the Holidays dataset.","PeriodicalId":21628,"journal":{"name":"Sci. Program.","volume":"40 1","pages":"7162779:1-7162779:9"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accurate Quaternion Polar Harmonic Transform for Color Image Analysis\",\"authors\":\"Lina Zhang, Yu Sang, D. Dai\",\"doi\":\"10.1155/2021/7162779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polar harmonic transforms (PHTs) have been applied in pattern recognition and image analysis. But the current computational framework of PHTs has two main demerits. First, some significant color information may be lost during color image processing in conventional methods because they are based on RGB decomposition or graying. Second, PHTs are influenced by geometric errors and numerical integration errors, which can be seen from image reconstruction errors. This paper presents a novel computational framework of quaternion polar harmonic transforms (QPHTs), namely, accurate QPHTs (AQPHTs). First, to holistically handle color images, quaternion-based PHTs are introduced by using the algebra of quaternions. Second, the Gaussian numerical integration is adopted for geometric and numerical error reduction. When compared with CNNs (convolutional neural networks)-based methods (i.e., VGG16) on the Oxford5K dataset, our AQPHT achieves better performance of scaling invariant representation. Moreover, when evaluated on standard image retrieval benchmarks, our AQPHT using smaller dimension of feature vector achieves comparable results with CNNs-based methods and outperforms the hand craft-based methods by 9.6% w.r.t mAP on the Holidays dataset.\",\"PeriodicalId\":21628,\"journal\":{\"name\":\"Sci. Program.\",\"volume\":\"40 1\",\"pages\":\"7162779:1-7162779:9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sci. Program.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/7162779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Program.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/7162779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurate Quaternion Polar Harmonic Transform for Color Image Analysis
Polar harmonic transforms (PHTs) have been applied in pattern recognition and image analysis. But the current computational framework of PHTs has two main demerits. First, some significant color information may be lost during color image processing in conventional methods because they are based on RGB decomposition or graying. Second, PHTs are influenced by geometric errors and numerical integration errors, which can be seen from image reconstruction errors. This paper presents a novel computational framework of quaternion polar harmonic transforms (QPHTs), namely, accurate QPHTs (AQPHTs). First, to holistically handle color images, quaternion-based PHTs are introduced by using the algebra of quaternions. Second, the Gaussian numerical integration is adopted for geometric and numerical error reduction. When compared with CNNs (convolutional neural networks)-based methods (i.e., VGG16) on the Oxford5K dataset, our AQPHT achieves better performance of scaling invariant representation. Moreover, when evaluated on standard image retrieval benchmarks, our AQPHT using smaller dimension of feature vector achieves comparable results with CNNs-based methods and outperforms the hand craft-based methods by 9.6% w.r.t mAP on the Holidays dataset.