Mariela Menghini, P. Homm, Chen-Yi Su, J. Kittl, R. Tomita, G. Hegde, Joon-Gon Lee, S. Hyun, C. Bowen, M. Rodder, V. Afanas’ev, J. Locquet
{"title":"先进接触方案中肖特基势垒高度的调制","authors":"Mariela Menghini, P. Homm, Chen-Yi Su, J. Kittl, R. Tomita, G. Hegde, Joon-Gon Lee, S. Hyun, C. Bowen, M. Rodder, V. Afanas’ev, J. Locquet","doi":"10.1109/IITC-MAM.2015.7325608","DOIUrl":null,"url":null,"abstract":"Contact schemes for scaled Si, SiGe and Ge channel MOSFETs devices are discussed, consistent with an approach based on SiGe alloys with low Schottky Barrier Height (SBH) for pMOS and Si contacts for nMOS, making reduction of the SBH to nSi critical. Methods for SBH reduction, and their underlying mechanisms, are studied. Accurate cryogenic CV measurements were used to extract SBH. We show that chalcogenide segregation can be effective in lowering the SBH by a dipole effect, while MIS contacts have a partial un-pinning effect. SBH=0.00±0.01 eV was achieved.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"20 1","pages":"39-42"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modulation of the Schottky barrier height for advanced contact schemes\",\"authors\":\"Mariela Menghini, P. Homm, Chen-Yi Su, J. Kittl, R. Tomita, G. Hegde, Joon-Gon Lee, S. Hyun, C. Bowen, M. Rodder, V. Afanas’ev, J. Locquet\",\"doi\":\"10.1109/IITC-MAM.2015.7325608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contact schemes for scaled Si, SiGe and Ge channel MOSFETs devices are discussed, consistent with an approach based on SiGe alloys with low Schottky Barrier Height (SBH) for pMOS and Si contacts for nMOS, making reduction of the SBH to nSi critical. Methods for SBH reduction, and their underlying mechanisms, are studied. Accurate cryogenic CV measurements were used to extract SBH. We show that chalcogenide segregation can be effective in lowering the SBH by a dipole effect, while MIS contacts have a partial un-pinning effect. SBH=0.00±0.01 eV was achieved.\",\"PeriodicalId\":6514,\"journal\":{\"name\":\"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)\",\"volume\":\"20 1\",\"pages\":\"39-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC-MAM.2015.7325608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC-MAM.2015.7325608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modulation of the Schottky barrier height for advanced contact schemes
Contact schemes for scaled Si, SiGe and Ge channel MOSFETs devices are discussed, consistent with an approach based on SiGe alloys with low Schottky Barrier Height (SBH) for pMOS and Si contacts for nMOS, making reduction of the SBH to nSi critical. Methods for SBH reduction, and their underlying mechanisms, are studied. Accurate cryogenic CV measurements were used to extract SBH. We show that chalcogenide segregation can be effective in lowering the SBH by a dipole effect, while MIS contacts have a partial un-pinning effect. SBH=0.00±0.01 eV was achieved.