三波段非纬向极化电磁超材料吸收体的设计与分析

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Applied Computational Electromagnetics Society Journal Pub Date : 2021-08-06 DOI:10.47037/2020.aces.j.360611
Hann-Biau Wu, Shijun Ji, Ji Zhao, Zhiyou Luo, D. Handa
{"title":"三波段非纬向极化电磁超材料吸收体的设计与分析","authors":"Hann-Biau Wu, Shijun Ji, Ji Zhao, Zhiyou Luo, D. Handa","doi":"10.47037/2020.aces.j.360611","DOIUrl":null,"url":null,"abstract":"A facile design of a novel triple-band electromagnetic metamaterial absorber (MMA) with\npolarization insensitive property is proposed in this paper. Each unit of the MMA consists of upper copper resonator and bottom copper plate with middle dielectric FR-4 between them. The MMA performs three absorption peaks at 16.919 GHz, 21.084 GHz and 25.266 GHz with absorption rates 99.90%, 97.76% and 99.18%, respectively. The influence of the main structural parameters on the frequencies and absorption rates is analyzed. The absorption mechanism of the absorber is explained by electric field, magnetic field and surface current distributions, which is supported by the electromagnetic parameters, affected with magnetic resonance. The polarization-insensitivity of TE wave is verified by observing the effects of the polarization angle change from 0-90º. The MMA can be applied in radiation, spectrum imaging detector, electromagnetic wave modulator, and so on.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Analysis of a Triple-band Non-zonal Polarization Electromagnetic Metamaterial Absorber\",\"authors\":\"Hann-Biau Wu, Shijun Ji, Ji Zhao, Zhiyou Luo, D. Handa\",\"doi\":\"10.47037/2020.aces.j.360611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A facile design of a novel triple-band electromagnetic metamaterial absorber (MMA) with\\npolarization insensitive property is proposed in this paper. Each unit of the MMA consists of upper copper resonator and bottom copper plate with middle dielectric FR-4 between them. The MMA performs three absorption peaks at 16.919 GHz, 21.084 GHz and 25.266 GHz with absorption rates 99.90%, 97.76% and 99.18%, respectively. The influence of the main structural parameters on the frequencies and absorption rates is analyzed. The absorption mechanism of the absorber is explained by electric field, magnetic field and surface current distributions, which is supported by the electromagnetic parameters, affected with magnetic resonance. The polarization-insensitivity of TE wave is verified by observing the effects of the polarization angle change from 0-90º. The MMA can be applied in radiation, spectrum imaging detector, electromagnetic wave modulator, and so on.\",\"PeriodicalId\":8207,\"journal\":{\"name\":\"Applied Computational Electromagnetics Society Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Electromagnetics Society Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.47037/2020.aces.j.360611\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2020.aces.j.360611","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种具有极化不敏感特性的新型三波段电磁超材料吸收体(MMA)的简易设计。MMA的每个单元由上铜谐振器和下铜板组成,中间的介质为FR-4。MMA在16.919 GHz、21.084 GHz和25.266 GHz有3个吸收峰,吸收率分别为99.90%、97.76%和99.18%。分析了主要结构参数对频率和吸收率的影响。吸收剂的吸收机理由电场、磁场和表面电流分布来解释,并得到电磁参数的支持,受磁共振影响。通过观察0 ~ 90º偏振角变化的影响,验证了TE波的偏振不敏感特性。MMA可应用于辐射、频谱成像探测器、电磁波调制器等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Analysis of a Triple-band Non-zonal Polarization Electromagnetic Metamaterial Absorber
A facile design of a novel triple-band electromagnetic metamaterial absorber (MMA) with polarization insensitive property is proposed in this paper. Each unit of the MMA consists of upper copper resonator and bottom copper plate with middle dielectric FR-4 between them. The MMA performs three absorption peaks at 16.919 GHz, 21.084 GHz and 25.266 GHz with absorption rates 99.90%, 97.76% and 99.18%, respectively. The influence of the main structural parameters on the frequencies and absorption rates is analyzed. The absorption mechanism of the absorber is explained by electric field, magnetic field and surface current distributions, which is supported by the electromagnetic parameters, affected with magnetic resonance. The polarization-insensitivity of TE wave is verified by observing the effects of the polarization angle change from 0-90º. The MMA can be applied in radiation, spectrum imaging detector, electromagnetic wave modulator, and so on.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
期刊最新文献
Electromagnetic and Thermal Analysis of a 6/4 Induction Switched Reluctance Machine for Electric Vehicle Application Synthesis of Elliptical Antenna Array using Hybrid SSWOA Algorithm Temperature Controlled Terahertz Absorbers based on Omega Resonators A Simple Interference and Power-based Direction of Arrival Measuring System for Modern Communication A Wideband, High Gain and Low Sidelobe Array Antenna for Modern ETC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1