{"title":"Janus金属-有机层实现光驱动质子在脂质体膜上的传输","authors":"Huihui Hu, Jieyu Zhu, Zhiye Wang, Liulin Yang, Wenbin Lin, Cheng Wang","doi":"10.2139/ssrn.3858057","DOIUrl":null,"url":null,"abstract":"Photo-generation of a proton gradient over a lipid bilayer is of interest due to its essential role in photosynthetic bacteria. Membrane asymmetry is key to the generation of a proton gradient via directional proton transport. Here we report a light-driven proton pump based on two-dimensional, porphyrin-based Janus metal-organic layers (Janus-MOLs) embedded in liposomes. We developed a microemulsion-based method to functionalize the Janus-MOLs with carboxyquinone on one side and Acitretin on the other side. By attaching the Janus-MOLs to liposome surfaces, we obtained a mimic to photosynthetic bacteria. Upon photoexcitation, the porphyrins initiate electron and hole transfers to carboxyquinone and Acitretin, respectively, which undergo redox reactions with freely diffusing quinone (Q) / hydrosemiquinone (HQ·) in the lipid bilayer to produce a concentration gradient of quinone-based species. Owing to different pKa values of HQ+ and HQ ·, these redox reactions trigger proton transport across the membrane to create a pH gradient, which drives ATP production by CF0F1-ATP synthase in a similar fashion as photosynthetic bacteria.","PeriodicalId":18268,"journal":{"name":"Materials Engineering eJournal","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Light-Driven Proton Transport Across Liposomal Membranes Enabled by Janus Metal-Organic Layers\",\"authors\":\"Huihui Hu, Jieyu Zhu, Zhiye Wang, Liulin Yang, Wenbin Lin, Cheng Wang\",\"doi\":\"10.2139/ssrn.3858057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photo-generation of a proton gradient over a lipid bilayer is of interest due to its essential role in photosynthetic bacteria. Membrane asymmetry is key to the generation of a proton gradient via directional proton transport. Here we report a light-driven proton pump based on two-dimensional, porphyrin-based Janus metal-organic layers (Janus-MOLs) embedded in liposomes. We developed a microemulsion-based method to functionalize the Janus-MOLs with carboxyquinone on one side and Acitretin on the other side. By attaching the Janus-MOLs to liposome surfaces, we obtained a mimic to photosynthetic bacteria. Upon photoexcitation, the porphyrins initiate electron and hole transfers to carboxyquinone and Acitretin, respectively, which undergo redox reactions with freely diffusing quinone (Q) / hydrosemiquinone (HQ·) in the lipid bilayer to produce a concentration gradient of quinone-based species. Owing to different pKa values of HQ+ and HQ ·, these redox reactions trigger proton transport across the membrane to create a pH gradient, which drives ATP production by CF0F1-ATP synthase in a similar fashion as photosynthetic bacteria.\",\"PeriodicalId\":18268,\"journal\":{\"name\":\"Materials Engineering eJournal\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3858057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3858057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Light-Driven Proton Transport Across Liposomal Membranes Enabled by Janus Metal-Organic Layers
Photo-generation of a proton gradient over a lipid bilayer is of interest due to its essential role in photosynthetic bacteria. Membrane asymmetry is key to the generation of a proton gradient via directional proton transport. Here we report a light-driven proton pump based on two-dimensional, porphyrin-based Janus metal-organic layers (Janus-MOLs) embedded in liposomes. We developed a microemulsion-based method to functionalize the Janus-MOLs with carboxyquinone on one side and Acitretin on the other side. By attaching the Janus-MOLs to liposome surfaces, we obtained a mimic to photosynthetic bacteria. Upon photoexcitation, the porphyrins initiate electron and hole transfers to carboxyquinone and Acitretin, respectively, which undergo redox reactions with freely diffusing quinone (Q) / hydrosemiquinone (HQ·) in the lipid bilayer to produce a concentration gradient of quinone-based species. Owing to different pKa values of HQ+ and HQ ·, these redox reactions trigger proton transport across the membrane to create a pH gradient, which drives ATP production by CF0F1-ATP synthase in a similar fashion as photosynthetic bacteria.