{"title":"1,3,4 -恶二唑新衍生物抗幽门螺杆菌活性的实验研究","authors":"Yasin SarveAhrabi","doi":"10.34172/ajcmi.2021.25","DOIUrl":null,"url":null,"abstract":"Background: The growing spread of drug resistance in Helicobacter pylori has caused concern. Urease is one of the most important enzymes associated with H. pylori activity. Oxadiazoles have a wide range of inhibitory activities. The aim of this study was to investigate new oxadiazole compounds as urease inhibitors of H. pylori. Methods: The synthesized compounds were reused as ligands in the previous study, and the initial structure of the compounds was optimized by the Molecular Mechanics Models method. Then, the compounds were evaluated as inhibitors on the active site of the urease enzyme by AutoDock Vina software, and the output results were analyzed and evaluated using soft Discovery Studio software. Results: All compounds, especially (4c) with flour groups, exhibited powerful inhibitory activity against the urease enzyme of H. pylori. Conclusions: The present findings indicated the inhibitory potential of the novel synthetic 1, 3, 4-oxadiazole compounds.","PeriodicalId":8689,"journal":{"name":"Avicenna Journal of Clinical Microbiology and Infection","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anti-Helicobacter pylori Activity of New Derivatives of 1, 3,4-Oxadiazole: In Silico Study\",\"authors\":\"Yasin SarveAhrabi\",\"doi\":\"10.34172/ajcmi.2021.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The growing spread of drug resistance in Helicobacter pylori has caused concern. Urease is one of the most important enzymes associated with H. pylori activity. Oxadiazoles have a wide range of inhibitory activities. The aim of this study was to investigate new oxadiazole compounds as urease inhibitors of H. pylori. Methods: The synthesized compounds were reused as ligands in the previous study, and the initial structure of the compounds was optimized by the Molecular Mechanics Models method. Then, the compounds were evaluated as inhibitors on the active site of the urease enzyme by AutoDock Vina software, and the output results were analyzed and evaluated using soft Discovery Studio software. Results: All compounds, especially (4c) with flour groups, exhibited powerful inhibitory activity against the urease enzyme of H. pylori. Conclusions: The present findings indicated the inhibitory potential of the novel synthetic 1, 3, 4-oxadiazole compounds.\",\"PeriodicalId\":8689,\"journal\":{\"name\":\"Avicenna Journal of Clinical Microbiology and Infection\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avicenna Journal of Clinical Microbiology and Infection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/ajcmi.2021.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna Journal of Clinical Microbiology and Infection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/ajcmi.2021.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anti-Helicobacter pylori Activity of New Derivatives of 1, 3,4-Oxadiazole: In Silico Study
Background: The growing spread of drug resistance in Helicobacter pylori has caused concern. Urease is one of the most important enzymes associated with H. pylori activity. Oxadiazoles have a wide range of inhibitory activities. The aim of this study was to investigate new oxadiazole compounds as urease inhibitors of H. pylori. Methods: The synthesized compounds were reused as ligands in the previous study, and the initial structure of the compounds was optimized by the Molecular Mechanics Models method. Then, the compounds were evaluated as inhibitors on the active site of the urease enzyme by AutoDock Vina software, and the output results were analyzed and evaluated using soft Discovery Studio software. Results: All compounds, especially (4c) with flour groups, exhibited powerful inhibitory activity against the urease enzyme of H. pylori. Conclusions: The present findings indicated the inhibitory potential of the novel synthetic 1, 3, 4-oxadiazole compounds.