同质与异质环境时空变化的遥感数据集

Thaer F. Ali, A. Woodley
{"title":"同质与异质环境时空变化的遥感数据集","authors":"Thaer F. Ali, A. Woodley","doi":"10.1109/DICTA47822.2019.8946005","DOIUrl":null,"url":null,"abstract":"Standard experimental datasets permit comprehensive analysis between approaches. These datasets are ubiquitous in many data science domains but uncommon in remote sensing. This paper presents the Spatial-Temporal Change in Environmental Context (STCEC) dataset, an experimental remote sensing dataset that contains changes (and non-changes) in homogeneous and heterogeneous environments, thereby, enabling researchers to test their approaches in different contexts. STCEC was tested with five pixel interpolation approaches and showed a significant difference between changes in homogeneous and heterogeneous environments. It is hoped that the dataset will be used by other researchers in future work.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"36 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"STCEC: A Remote Sensing Dataset for Identifying Spatial-Temporal Change in Homogeneous and Heterogeneous Environments\",\"authors\":\"Thaer F. Ali, A. Woodley\",\"doi\":\"10.1109/DICTA47822.2019.8946005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standard experimental datasets permit comprehensive analysis between approaches. These datasets are ubiquitous in many data science domains but uncommon in remote sensing. This paper presents the Spatial-Temporal Change in Environmental Context (STCEC) dataset, an experimental remote sensing dataset that contains changes (and non-changes) in homogeneous and heterogeneous environments, thereby, enabling researchers to test their approaches in different contexts. STCEC was tested with five pixel interpolation approaches and showed a significant difference between changes in homogeneous and heterogeneous environments. It is hoped that the dataset will be used by other researchers in future work.\",\"PeriodicalId\":6696,\"journal\":{\"name\":\"2019 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"36 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA47822.2019.8946005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8946005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

标准实验数据集允许在不同方法之间进行综合分析。这些数据集在许多数据科学领域普遍存在,但在遥感领域并不常见。本文介绍了环境背景下的时空变化(STCEC)数据集,这是一个包含同质和异质环境变化(和非变化)的实验遥感数据集,从而使研究人员能够在不同的背景下测试他们的方法。采用5种像素插值方法对STCEC进行了测试,结果表明均匀和异质环境下STCEC的变化存在显著差异。希望该数据集将被其他研究人员在未来的工作中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STCEC: A Remote Sensing Dataset for Identifying Spatial-Temporal Change in Homogeneous and Heterogeneous Environments
Standard experimental datasets permit comprehensive analysis between approaches. These datasets are ubiquitous in many data science domains but uncommon in remote sensing. This paper presents the Spatial-Temporal Change in Environmental Context (STCEC) dataset, an experimental remote sensing dataset that contains changes (and non-changes) in homogeneous and heterogeneous environments, thereby, enabling researchers to test their approaches in different contexts. STCEC was tested with five pixel interpolation approaches and showed a significant difference between changes in homogeneous and heterogeneous environments. It is hoped that the dataset will be used by other researchers in future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Micro Target Detection through Local Motion Feedback in Biologically Inspired Algorithms Hyperspectral Image Analysis for Writer Identification using Deep Learning Robust Image Watermarking Framework Powered by Convolutional Encoder-Decoder Network Single View 3D Point Cloud Reconstruction using Novel View Synthesis and Self-Supervised Depth Estimation Semantic Segmentation under Severe Imaging Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1