{"title":"用于有机-无机杂化光伏的无毒胶体ZnS-AgInS2纳米颗粒","authors":"E. Sanehira, C. Luscombe, Lih Y. Lin","doi":"10.1109/PVSC.2014.6925211","DOIUrl":null,"url":null,"abstract":"Non-toxic, colloidal ZnS-AgInS2 nanoparticles are synthesized and characterized for organic-inorganic hybrid photovoltaic applications. The optical properties of these particles are easily tuned by changing the chemical composition of the nanoparticle. Additionally, the photoluminescence quantum yield of 37.5% suggests this material is a promising candidate for optoelectronic devices. A comparison of the photoluminescence spectra of ZnS-AgInS2 nanoparticle and poly-3(hexylthiophene) blends to poly-3(hexylthiophene) neat indicates charge transfer between the nanoparticle and the polymer occurs in solution. Photovoltaic devices were fabricated using blends of ZnS-AgInS2 nanoparticles, poly-3(hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester, yielding an average power conversion efficiency of 2.3%.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"35 1","pages":"1547-1552"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-toxic, colloidal ZnS-AgInS2 nanoparticles for organic-inorganic hybrid photovoltaics\",\"authors\":\"E. Sanehira, C. Luscombe, Lih Y. Lin\",\"doi\":\"10.1109/PVSC.2014.6925211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-toxic, colloidal ZnS-AgInS2 nanoparticles are synthesized and characterized for organic-inorganic hybrid photovoltaic applications. The optical properties of these particles are easily tuned by changing the chemical composition of the nanoparticle. Additionally, the photoluminescence quantum yield of 37.5% suggests this material is a promising candidate for optoelectronic devices. A comparison of the photoluminescence spectra of ZnS-AgInS2 nanoparticle and poly-3(hexylthiophene) blends to poly-3(hexylthiophene) neat indicates charge transfer between the nanoparticle and the polymer occurs in solution. Photovoltaic devices were fabricated using blends of ZnS-AgInS2 nanoparticles, poly-3(hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester, yielding an average power conversion efficiency of 2.3%.\",\"PeriodicalId\":6649,\"journal\":{\"name\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"volume\":\"35 1\",\"pages\":\"1547-1552\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2014.6925211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-toxic, colloidal ZnS-AgInS2 nanoparticles for organic-inorganic hybrid photovoltaics
Non-toxic, colloidal ZnS-AgInS2 nanoparticles are synthesized and characterized for organic-inorganic hybrid photovoltaic applications. The optical properties of these particles are easily tuned by changing the chemical composition of the nanoparticle. Additionally, the photoluminescence quantum yield of 37.5% suggests this material is a promising candidate for optoelectronic devices. A comparison of the photoluminescence spectra of ZnS-AgInS2 nanoparticle and poly-3(hexylthiophene) blends to poly-3(hexylthiophene) neat indicates charge transfer between the nanoparticle and the polymer occurs in solution. Photovoltaic devices were fabricated using blends of ZnS-AgInS2 nanoparticles, poly-3(hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester, yielding an average power conversion efficiency of 2.3%.