裂隙和方形活塞快速压缩机的热学和空气动力学特征:扩展绝热核心假说的有效性,产生受控温度梯度

IF 2 3区 工程技术 Q3 MECHANICS Flow, Turbulence and Combustion Pub Date : 2023-08-19 DOI:10.1007/s10494-023-00465-8
H. Ossman, C. Strozzi, J. Sotton, M. Bellenoue
{"title":"裂隙和方形活塞快速压缩机的热学和空气动力学特征:扩展绝热核心假说的有效性,产生受控温度梯度","authors":"H. Ossman,&nbsp;C. Strozzi,&nbsp;J. Sotton,&nbsp;M. Bellenoue","doi":"10.1007/s10494-023-00465-8","DOIUrl":null,"url":null,"abstract":"<div><p>Rapid compression machines (RCM) are well-known tools to study the autoignition phenomenon under engine-relevant conditions. Covering a wide range of pressure and temperature at the top dead center (TDC), it can be employed with different types of mixtures and thermal stratification. Creating a homogeneous hot core region after compression in the combustion chamber is one of the challenges to overcome for RCM studies. The objective of the present work is to characterize from aerodynamic and thermal points of view a new configuration in the optical RCM of Pprime Institute. The latter aims at ensuring a wider adiabatic core region in terms of time and space through the installation of a creviced piston, specifically adapted to the square cross-section cylinder of this particular RCM. For this purpose, the internal flow has been qualified using high-frequency Particle Image Velocimetry with different laser sheet locations. Temperature variation during and after compression is measured at several positions with respect to the cylinder head, using thermocouples with wire diameter of 7.6 µm. It is observed that the piston cavity is able to collect the boundary layer created during compression and maintain a wide region at low velocity after the top dead center. Furthermore, it is demonstrated that different temperature gradient values can be generated and quantified within the adiabatic core region through differential heating of the chamber. This feature is promising for future works devoted to the analysis of combustion regimes. More generally, the thin wire thermocouples are shown to be accurate and reliable sensors to measure temperature in severe and transient pressure and temperature conditions specific to RCM internal flows.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and Aerodynamic Characterization of a Creviced and Squared Piston Rapid Compression Machine: Extending the Validity of the Adiabatic Core Hypothesis, Generating Controlled Temperature Gradients\",\"authors\":\"H. Ossman,&nbsp;C. Strozzi,&nbsp;J. Sotton,&nbsp;M. Bellenoue\",\"doi\":\"10.1007/s10494-023-00465-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rapid compression machines (RCM) are well-known tools to study the autoignition phenomenon under engine-relevant conditions. Covering a wide range of pressure and temperature at the top dead center (TDC), it can be employed with different types of mixtures and thermal stratification. Creating a homogeneous hot core region after compression in the combustion chamber is one of the challenges to overcome for RCM studies. The objective of the present work is to characterize from aerodynamic and thermal points of view a new configuration in the optical RCM of Pprime Institute. The latter aims at ensuring a wider adiabatic core region in terms of time and space through the installation of a creviced piston, specifically adapted to the square cross-section cylinder of this particular RCM. For this purpose, the internal flow has been qualified using high-frequency Particle Image Velocimetry with different laser sheet locations. Temperature variation during and after compression is measured at several positions with respect to the cylinder head, using thermocouples with wire diameter of 7.6 µm. It is observed that the piston cavity is able to collect the boundary layer created during compression and maintain a wide region at low velocity after the top dead center. Furthermore, it is demonstrated that different temperature gradient values can be generated and quantified within the adiabatic core region through differential heating of the chamber. This feature is promising for future works devoted to the analysis of combustion regimes. More generally, the thin wire thermocouples are shown to be accurate and reliable sensors to measure temperature in severe and transient pressure and temperature conditions specific to RCM internal flows.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-023-00465-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00465-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

快速压缩机(RCM)是研究发动机相关条件下自燃现象的著名工具。它覆盖了上死点(TDC)压力和温度的广泛范围,可用于不同类型的混合物和热分层。在燃烧室压缩后创建一个均匀的热核区域是 RCM 研究需要克服的挑战之一。本研究的目的是从空气动力学和热学角度分析 Pprime 研究所光学 RCM 的新配置。后者旨在通过安装一个缝隙活塞,在时间和空间上确保更宽的绝热核心区域,该活塞专门适用于这一特定 RCM 的方形横截面气缸。为此,使用高频粒子图像测速仪在不同的激光片位置对内部流动进行了检测。使用线径为 7.6 微米的热电偶,在气缸盖的多个位置测量压缩过程中和压缩后的温度变化。结果表明,活塞腔能够收集压缩过程中产生的边界层,并在上死点之后保持一个较宽的低速区域。此外,研究还证明,通过腔体的差异加热,可在绝热核心区域内产生不同的温度梯度值,并对其进行量化。这一特点对于未来专门分析燃烧机制的工作大有可为。总体而言,细线热电偶被证明是准确可靠的传感器,可在 RCM 内部流动特有的恶劣和瞬态压力和温度条件下测量温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal and Aerodynamic Characterization of a Creviced and Squared Piston Rapid Compression Machine: Extending the Validity of the Adiabatic Core Hypothesis, Generating Controlled Temperature Gradients

Rapid compression machines (RCM) are well-known tools to study the autoignition phenomenon under engine-relevant conditions. Covering a wide range of pressure and temperature at the top dead center (TDC), it can be employed with different types of mixtures and thermal stratification. Creating a homogeneous hot core region after compression in the combustion chamber is one of the challenges to overcome for RCM studies. The objective of the present work is to characterize from aerodynamic and thermal points of view a new configuration in the optical RCM of Pprime Institute. The latter aims at ensuring a wider adiabatic core region in terms of time and space through the installation of a creviced piston, specifically adapted to the square cross-section cylinder of this particular RCM. For this purpose, the internal flow has been qualified using high-frequency Particle Image Velocimetry with different laser sheet locations. Temperature variation during and after compression is measured at several positions with respect to the cylinder head, using thermocouples with wire diameter of 7.6 µm. It is observed that the piston cavity is able to collect the boundary layer created during compression and maintain a wide region at low velocity after the top dead center. Furthermore, it is demonstrated that different temperature gradient values can be generated and quantified within the adiabatic core region through differential heating of the chamber. This feature is promising for future works devoted to the analysis of combustion regimes. More generally, the thin wire thermocouples are shown to be accurate and reliable sensors to measure temperature in severe and transient pressure and temperature conditions specific to RCM internal flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
期刊最新文献
Spatial Averaging Effects in Adverse Pressure Gradient Turbulent Boundary Layers LES of Biomass Syngas Combustion in a Swirl Stabilised Burner: Model Validation and Predictions A Comparison of Evaluation Methodologies of the Fractal Dimension of Premixed Turbulent Flames in 2D and 3D Using Direct Numerical Simulation Data Instability Modes and Scaling Analysis During Electro-Hydro-Dynamic-Atomization: Theoretical and Experimental Study Assessment of Wall Modeling With Adverse Pressure Gradient for High Reynolds Number Separated Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1