加州灌溉果园内部和上方的臭氧交换

J. S. Brown, M. Shapkalijevski, Maarten Krol, Thomas Karl, H. Ouwersloot, A. Moene, E. Patton, J. V. D. Arellano
{"title":"加州灌溉果园内部和上方的臭氧交换","authors":"J. S. Brown, M. Shapkalijevski, Maarten Krol, Thomas Karl, H. Ouwersloot, A. Moene, E. Patton, J. V. D. Arellano","doi":"10.1080/16000889.2020.1723346","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the canopy effects on the vertical ozone exchange within and above Californian orchard are investigated. We examined the comprehensive dataset obtained from the Canopy Horizontal Array Turbulence Study (CHATS). CHATS typifies a rural central Californian site, with O3 mixing ratios of less than 60 ppb and moderate NO x mixing ratios. The CHATS campaign covered a complete irrigation cycle, with our analysis including periods before and after irrigation. Lower O3 mixing ratios were found following irrigation, together with increased wind speeds, decreased air temperatures and increased specific humidity. Friction velocity, sensible heat and gas fluxes above the canopy were estimated using variations on the flux-gradient method, including a method which accounts for the roughness sublayer (RSL). These methods were compared to fluxes derived from observed eddy diffusivities of heat and friction velocity. We found that the use of the RSL parameterization, which accounts for the canopy-induced turbulent mixing above the canopy, resulted in a stronger momentum, heat, and ozone exchange fluxes above this orchard, compared to the method which omits the RSL. This was quantified by the increased friction velocity, heat flux and ozone deposition flux of up to 12, 29, and 35% at 2.5 m above the canopy, respectively. Within the canopy, vertical fluxes, as derived from local gradients and eddy diffusivity of heat, were compared to fluxes calculated using the Lagrangian inverse theory. Both methods showed a presence of vertical flux divergence of friction velocity, heat and ozone, suggesting that turbulent mixing was inefficient in homogenizing the effects driven by local sources and sinks on vertical exchange of those quantities. This weak mixing within the canopy was also corroborated in the eddy diffusivities of friction velocity and heat, which were calculated directly from the observations. Finally, the influence of water stress on the O3 budget was examined by comparing the results prior and after the irrigation. Although the analysis is limited to the local conditions, our in situ measurements indicated differences in the O3 mixing ratio prior and after irrigation during CHATS. We attribute these O3 mixing ratio changes to enhanced biological emission of volatile organic compounds (VOCs), driven by water stress.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"9 1","pages":"1 - 17"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ozone exchange within and above an irrigated Californian orchard\",\"authors\":\"J. S. Brown, M. Shapkalijevski, Maarten Krol, Thomas Karl, H. Ouwersloot, A. Moene, E. Patton, J. V. D. Arellano\",\"doi\":\"10.1080/16000889.2020.1723346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, the canopy effects on the vertical ozone exchange within and above Californian orchard are investigated. We examined the comprehensive dataset obtained from the Canopy Horizontal Array Turbulence Study (CHATS). CHATS typifies a rural central Californian site, with O3 mixing ratios of less than 60 ppb and moderate NO x mixing ratios. The CHATS campaign covered a complete irrigation cycle, with our analysis including periods before and after irrigation. Lower O3 mixing ratios were found following irrigation, together with increased wind speeds, decreased air temperatures and increased specific humidity. Friction velocity, sensible heat and gas fluxes above the canopy were estimated using variations on the flux-gradient method, including a method which accounts for the roughness sublayer (RSL). These methods were compared to fluxes derived from observed eddy diffusivities of heat and friction velocity. We found that the use of the RSL parameterization, which accounts for the canopy-induced turbulent mixing above the canopy, resulted in a stronger momentum, heat, and ozone exchange fluxes above this orchard, compared to the method which omits the RSL. This was quantified by the increased friction velocity, heat flux and ozone deposition flux of up to 12, 29, and 35% at 2.5 m above the canopy, respectively. Within the canopy, vertical fluxes, as derived from local gradients and eddy diffusivity of heat, were compared to fluxes calculated using the Lagrangian inverse theory. Both methods showed a presence of vertical flux divergence of friction velocity, heat and ozone, suggesting that turbulent mixing was inefficient in homogenizing the effects driven by local sources and sinks on vertical exchange of those quantities. This weak mixing within the canopy was also corroborated in the eddy diffusivities of friction velocity and heat, which were calculated directly from the observations. Finally, the influence of water stress on the O3 budget was examined by comparing the results prior and after the irrigation. Although the analysis is limited to the local conditions, our in situ measurements indicated differences in the O3 mixing ratio prior and after irrigation during CHATS. We attribute these O3 mixing ratio changes to enhanced biological emission of volatile organic compounds (VOCs), driven by water stress.\",\"PeriodicalId\":22320,\"journal\":{\"name\":\"Tellus B: Chemical and Physical Meteorology\",\"volume\":\"9 1\",\"pages\":\"1 - 17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tellus B: Chemical and Physical Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16000889.2020.1723346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus B: Chemical and Physical Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16000889.2020.1723346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文研究了冠层对加利福尼亚果园内外臭氧垂直交换的影响。我们研究了从冠层水平阵列湍流研究(CHATS)获得的综合数据集。CHATS是加利福尼亚中部农村地区的典型,O3混合比小于60 ppb, nox混合比中等。CHATS活动涵盖了一个完整的灌溉周期,我们的分析包括灌溉前后的时期。灌溉后,O3混合比降低,风速增加,空气温度降低,比湿度增加。利用通量梯度变分法,包括考虑粗糙度亚层(RSL)的方法,估算了冠层上的摩擦速度、感热和气体通量。将这些方法与观测到的涡流热扩散率和摩擦速度得出的通量进行了比较。我们发现,与忽略RSL的方法相比,使用RSL参数化(考虑了冠层上方引起的湍流混合)导致该果园上方的动量、热量和臭氧交换通量更强。在冠层上方2.5 m处,摩擦速度、热通量和臭氧沉积通量分别增加了12%、29%和35%。在冠层内,由局部梯度和热涡流扩散率导出的垂直通量与使用拉格朗日逆理论计算的通量进行了比较。两种方法都显示摩擦速度、热量和臭氧的垂直通量发散存在,表明湍流混合在均匀化局部源和汇对这些量的垂直交换的影响方面效率不高。冠层内的这种弱混合也在摩擦速度和热的涡流扩散系数中得到证实,这是直接从观测中计算出来的。最后,通过比较灌溉前后的结果,探讨了水分胁迫对O3收支的影响。虽然分析仅限于当地条件,但我们的现场测量表明,在chat期间,灌溉前后的O3混合比例存在差异。我们将这些O3混合比的变化归因于水分胁迫导致挥发性有机化合物(VOCs)的生物排放增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ozone exchange within and above an irrigated Californian orchard
Abstract In this study, the canopy effects on the vertical ozone exchange within and above Californian orchard are investigated. We examined the comprehensive dataset obtained from the Canopy Horizontal Array Turbulence Study (CHATS). CHATS typifies a rural central Californian site, with O3 mixing ratios of less than 60 ppb and moderate NO x mixing ratios. The CHATS campaign covered a complete irrigation cycle, with our analysis including periods before and after irrigation. Lower O3 mixing ratios were found following irrigation, together with increased wind speeds, decreased air temperatures and increased specific humidity. Friction velocity, sensible heat and gas fluxes above the canopy were estimated using variations on the flux-gradient method, including a method which accounts for the roughness sublayer (RSL). These methods were compared to fluxes derived from observed eddy diffusivities of heat and friction velocity. We found that the use of the RSL parameterization, which accounts for the canopy-induced turbulent mixing above the canopy, resulted in a stronger momentum, heat, and ozone exchange fluxes above this orchard, compared to the method which omits the RSL. This was quantified by the increased friction velocity, heat flux and ozone deposition flux of up to 12, 29, and 35% at 2.5 m above the canopy, respectively. Within the canopy, vertical fluxes, as derived from local gradients and eddy diffusivity of heat, were compared to fluxes calculated using the Lagrangian inverse theory. Both methods showed a presence of vertical flux divergence of friction velocity, heat and ozone, suggesting that turbulent mixing was inefficient in homogenizing the effects driven by local sources and sinks on vertical exchange of those quantities. This weak mixing within the canopy was also corroborated in the eddy diffusivities of friction velocity and heat, which were calculated directly from the observations. Finally, the influence of water stress on the O3 budget was examined by comparing the results prior and after the irrigation. Although the analysis is limited to the local conditions, our in situ measurements indicated differences in the O3 mixing ratio prior and after irrigation during CHATS. We attribute these O3 mixing ratio changes to enhanced biological emission of volatile organic compounds (VOCs), driven by water stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Approach to Investigating the Relative Importance of Meteorological and Aerosol-Related Parameters in Determining Cloud Microphysical Properties Dimensionless Parameterizations of Air-Sea CO2 Gas Transfer Velocity on Surface Waves Transport of Mineral Dust Into the Arctic in Two Reanalysis Datasets of Atmospheric Composition The Climatic Role of Interactive Leaf Phenology in the Vegetation-Atmosphere System of Radiative-Convective Equilibrium Storm-Resolving Simulations Tropical and Boreal Forest – Atmosphere Interactions: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1