失去REEP4会导致爪蟾胚胎瘫痪。

Joanna Argasinska, Amer A. Rana, M. Gilchrist, Kim Lachani, Alice Young, James C. Smith
{"title":"失去REEP4会导致爪蟾胚胎瘫痪。","authors":"Joanna Argasinska, Amer A. Rana, M. Gilchrist, Kim Lachani, Alice Young, James C. Smith","doi":"10.1387/ijdb.072542ja","DOIUrl":null,"url":null,"abstract":"Members of the REEP (Receptor expression enhancing protein) family contain a TB2/DP1, HVA22 domain that is involved in intracellular trafficking and secretion. Consistent with the presence of this domain, REEP1 and REEP3 enhance the expression of odorant and taste receptors in mammals, while mutation of these genes causes defects in neural development. REEP4 was identified in the course of a functional antisense morpholino oligonucleotide screen searching for genes involved in the early development of Xenopus tropicalis: although over-expression of the gene causes no phenotype, embryos lacking REEP4 develop a slightly kinked body axis and are paralysed. At tailbud stages of development, REEP4 is expressed in the somites and neural tube. The paralysis observed in embryos lacking REEP4 might therefore be caused by defects in the nervous system or in muscle. To address this point, we examined the expression of various neural and muscle markers and found that although all are expressed normally at early stages of development, many are down regulated by the tailbud stage. This suggests that REEP4 plays a role in the maintenance of both the nervous system and the musculature.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Loss of REEP4 causes paralysis of the Xenopus embryo.\",\"authors\":\"Joanna Argasinska, Amer A. Rana, M. Gilchrist, Kim Lachani, Alice Young, James C. Smith\",\"doi\":\"10.1387/ijdb.072542ja\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Members of the REEP (Receptor expression enhancing protein) family contain a TB2/DP1, HVA22 domain that is involved in intracellular trafficking and secretion. Consistent with the presence of this domain, REEP1 and REEP3 enhance the expression of odorant and taste receptors in mammals, while mutation of these genes causes defects in neural development. REEP4 was identified in the course of a functional antisense morpholino oligonucleotide screen searching for genes involved in the early development of Xenopus tropicalis: although over-expression of the gene causes no phenotype, embryos lacking REEP4 develop a slightly kinked body axis and are paralysed. At tailbud stages of development, REEP4 is expressed in the somites and neural tube. The paralysis observed in embryos lacking REEP4 might therefore be caused by defects in the nervous system or in muscle. To address this point, we examined the expression of various neural and muscle markers and found that although all are expressed normally at early stages of development, many are down regulated by the tailbud stage. This suggests that REEP4 plays a role in the maintenance of both the nervous system and the musculature.\",\"PeriodicalId\":94228,\"journal\":{\"name\":\"The International journal of developmental biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International journal of developmental biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.072542ja\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of developmental biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1387/ijdb.072542ja","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

REEP(受体表达增强蛋白)家族成员含有TB2/DP1, HVA22结构域,参与细胞内运输和分泌。与该结构域的存在一致,REEP1和REEP3增强了哺乳动物嗅觉和味觉受体的表达,而这些基因的突变会导致神经发育缺陷。REEP4是在寻找热带非洲爪蟾早期发育相关基因的功能性反义morpholino寡核苷酸筛选过程中发现的:尽管该基因的过度表达不会导致表型,但缺乏REEP4的胚胎会产生轻微的体轴扭结并瘫痪。在尾芽发育阶段,REEP4在体和神经管中表达。因此,在缺乏REEP4的胚胎中观察到的瘫痪可能是由神经系统或肌肉缺陷引起的。为了解决这一点,我们检查了各种神经和肌肉标记物的表达,发现尽管所有这些标记物在发育早期都正常表达,但许多标记物在尾芽阶段被下调。这表明REEP4在神经系统和肌肉组织的维持中都起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Loss of REEP4 causes paralysis of the Xenopus embryo.
Members of the REEP (Receptor expression enhancing protein) family contain a TB2/DP1, HVA22 domain that is involved in intracellular trafficking and secretion. Consistent with the presence of this domain, REEP1 and REEP3 enhance the expression of odorant and taste receptors in mammals, while mutation of these genes causes defects in neural development. REEP4 was identified in the course of a functional antisense morpholino oligonucleotide screen searching for genes involved in the early development of Xenopus tropicalis: although over-expression of the gene causes no phenotype, embryos lacking REEP4 develop a slightly kinked body axis and are paralysed. At tailbud stages of development, REEP4 is expressed in the somites and neural tube. The paralysis observed in embryos lacking REEP4 might therefore be caused by defects in the nervous system or in muscle. To address this point, we examined the expression of various neural and muscle markers and found that although all are expressed normally at early stages of development, many are down regulated by the tailbud stage. This suggests that REEP4 plays a role in the maintenance of both the nervous system and the musculature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Epigenetic and transcriptional regulation of neuron phenotype. Histological characterisation of the horn bud region in 58 day old bovine fetuses. Genetic targeting of lymphatic endothelial cells in mice: current strategies and future perspectives. Origin and Development of Interstitial Cells of Cajal. Expression analysis of thg1l during Xenopus laevis development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1