{"title":"平滑鲁棒张量补全的背景/前景缺失像素分离:具有收敛性保证的新算法","authors":"Bo Shen, Weijun Xie, Zhen Kong","doi":"10.48550/arXiv.2203.16328","DOIUrl":null,"url":null,"abstract":"The objective of this study is to address the problem of background/foreground separation with missing pixels by combining the video acquisition, video recovery, background/foreground separation into a single framework. To achieve this, a smooth robust tensor completion (SRTC) model is proposed to recover the data and decompose it into the static background and smooth foreground, respectively. Specifically, the static background is modeled by the low-rank tucker decomposition and the smooth foreground (moving objects) is modeled by the spatiotemporal continuity, which is enforced by the total variation regularization. An efficient algorithm based on tensor proximal alternating minimization (tenPAM) is implemented to solve the proposed model with global convergence guarantee under very mild conditions. Extensive experiments on real data demonstrate that the proposed method significantly outperforms the state-of-the-art approaches for background/foreground separation with missing pixels.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"24 1","pages":"217:1-217:40"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Smooth Robust Tensor Completion for Background/Foreground Separation with Missing Pixels: Novel Algorithm with Convergence Guarantee\",\"authors\":\"Bo Shen, Weijun Xie, Zhen Kong\",\"doi\":\"10.48550/arXiv.2203.16328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to address the problem of background/foreground separation with missing pixels by combining the video acquisition, video recovery, background/foreground separation into a single framework. To achieve this, a smooth robust tensor completion (SRTC) model is proposed to recover the data and decompose it into the static background and smooth foreground, respectively. Specifically, the static background is modeled by the low-rank tucker decomposition and the smooth foreground (moving objects) is modeled by the spatiotemporal continuity, which is enforced by the total variation regularization. An efficient algorithm based on tensor proximal alternating minimization (tenPAM) is implemented to solve the proposed model with global convergence guarantee under very mild conditions. Extensive experiments on real data demonstrate that the proposed method significantly outperforms the state-of-the-art approaches for background/foreground separation with missing pixels.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"24 1\",\"pages\":\"217:1-217:40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.16328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.16328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smooth Robust Tensor Completion for Background/Foreground Separation with Missing Pixels: Novel Algorithm with Convergence Guarantee
The objective of this study is to address the problem of background/foreground separation with missing pixels by combining the video acquisition, video recovery, background/foreground separation into a single framework. To achieve this, a smooth robust tensor completion (SRTC) model is proposed to recover the data and decompose it into the static background and smooth foreground, respectively. Specifically, the static background is modeled by the low-rank tucker decomposition and the smooth foreground (moving objects) is modeled by the spatiotemporal continuity, which is enforced by the total variation regularization. An efficient algorithm based on tensor proximal alternating minimization (tenPAM) is implemented to solve the proposed model with global convergence guarantee under very mild conditions. Extensive experiments on real data demonstrate that the proposed method significantly outperforms the state-of-the-art approaches for background/foreground separation with missing pixels.