{"title":"经典页近似的新方法","authors":"Parvendra Kumar, S. Chaudhary","doi":"10.1109/CONFLUENCE.2017.7943235","DOIUrl":null,"url":null,"abstract":"In this paper, a novel approach of pade approximation has been proposed. Pade approximation is used to convert higher order model into a lower order model. In this reduction a deep analysis gives some new results about pade approximation and its pole placement. Therefore shifting the pole of higher order model, a novel approach has been proposed for the pole placement of reduced order model.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"548 1","pages":"667-670"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Novel approach in classical pade approximation\",\"authors\":\"Parvendra Kumar, S. Chaudhary\",\"doi\":\"10.1109/CONFLUENCE.2017.7943235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel approach of pade approximation has been proposed. Pade approximation is used to convert higher order model into a lower order model. In this reduction a deep analysis gives some new results about pade approximation and its pole placement. Therefore shifting the pole of higher order model, a novel approach has been proposed for the pole placement of reduced order model.\",\"PeriodicalId\":6651,\"journal\":{\"name\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"volume\":\"548 1\",\"pages\":\"667-670\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2017.7943235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的页逼近方法。采用Pade近似将高阶模型转化为低阶模型。在这一简化中,深入的分析给出了关于页逼近及其极点布置的一些新结果。因此,通过对高阶模型极点的移位,提出了一种新的降阶模型极点放置方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel approach in classical pade approximation
In this paper, a novel approach of pade approximation has been proposed. Pade approximation is used to convert higher order model into a lower order model. In this reduction a deep analysis gives some new results about pade approximation and its pole placement. Therefore shifting the pole of higher order model, a novel approach has been proposed for the pole placement of reduced order model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrological Modelling to Inform Forest Management: Moving Beyond Equivalent Clearcut Area Enhanced feature mining and classifier models to predict customer churn for an E-retailer Towards the practical design of performance-aware resilient wireless NoC architectures Adaptive virtual MIMO single cluster optimization in a small cell Software effort estimation using machine learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1