Na4.92Y0.92Zr0.08Si4O12中Na+离子电导率的室温增强

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2023-08-07 DOI:10.1016/j.esci.2023.100175
Aikai Yang , Kai Yao , Mareen Schaller , Enkhtsetseg Dashjav , Hang Li , Shuo Zhao , Qiu Zhang , Martin Etter , Xingchen Shen , Huimin Song , Qiongqiong Lu , Ruijie Ye , Igor Moudrakovski , Quanquan Pang , Sylvio Indris , Xingchao Wang , Qianli Ma , Frank Tietz , Jun Chen , Olivier Guillon
{"title":"Na4.92Y0.92Zr0.08Si4O12中Na+离子电导率的室温增强","authors":"Aikai Yang ,&nbsp;Kai Yao ,&nbsp;Mareen Schaller ,&nbsp;Enkhtsetseg Dashjav ,&nbsp;Hang Li ,&nbsp;Shuo Zhao ,&nbsp;Qiu Zhang ,&nbsp;Martin Etter ,&nbsp;Xingchen Shen ,&nbsp;Huimin Song ,&nbsp;Qiongqiong Lu ,&nbsp;Ruijie Ye ,&nbsp;Igor Moudrakovski ,&nbsp;Quanquan Pang ,&nbsp;Sylvio Indris ,&nbsp;Xingchao Wang ,&nbsp;Qianli Ma ,&nbsp;Frank Tietz ,&nbsp;Jun Chen ,&nbsp;Olivier Guillon","doi":"10.1016/j.esci.2023.100175","DOIUrl":null,"url":null,"abstract":"<div><p>Developing cost-effective and reliable solid-state sodium batteries with superior performance is crucial for stationary energy storage. A key component in facilitating their application is a solid-state electrolyte with high conductivity and stability. Herein, we employed aliovalent cation substitution to enhance ionic conductivity while preserving the crystal structure. Optimized substitution of Y<sup>3+</sup> with Zr<sup>4+</sup> in Na<sub>5</sub>YSi<sub>4</sub>O<sub>12</sub> introduced Na<sup>+</sup> ​ion vacancies, resulting in high bulk and total conductivities of up to 6.5 and 3.3 ​mS ​cm<sup>−1</sup>, respectively, at room temperature with the composition Na<sub>4.92</sub>Y<sub>0.92</sub>Zr<sub>0.08</sub>Si<sub>4</sub>O<sub>12</sub> (NYZS). NYZS shows exceptional electrochemical stability (up to 10 ​V <em>vs</em>. Na<sup>+</sup>/Na), favorable interfacial compatibility with Na, and an excellent critical current density of 2.4 ​mA ​cm<sup>−2</sup>. The enhanced conductivity of Na<sup>+</sup> ​ions in NYZS was elucidated using solid-state nuclear magnetic resonance techniques and theoretical simulations, revealing two migration routes facilitated by the synergistic effect of increased Na<sup>+</sup> ​ion vacancies and improved chemical environment due to Zr<sup>4+</sup> substitution. NYZS extends the list of suitable solid-state electrolytes and enables the facile synthesis of stable, low-cost Na<sup>+</sup> ion silicate electrolytes.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 6","pages":"Article 100175"},"PeriodicalIF":42.9000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001131/pdfft?md5=cb33c7375e12888a74d10f0c49cb1fa4&pid=1-s2.0-S2667141723001131-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced room-temperature Na+ ionic conductivity in Na4.92Y0.92Zr0.08Si4O12\",\"authors\":\"Aikai Yang ,&nbsp;Kai Yao ,&nbsp;Mareen Schaller ,&nbsp;Enkhtsetseg Dashjav ,&nbsp;Hang Li ,&nbsp;Shuo Zhao ,&nbsp;Qiu Zhang ,&nbsp;Martin Etter ,&nbsp;Xingchen Shen ,&nbsp;Huimin Song ,&nbsp;Qiongqiong Lu ,&nbsp;Ruijie Ye ,&nbsp;Igor Moudrakovski ,&nbsp;Quanquan Pang ,&nbsp;Sylvio Indris ,&nbsp;Xingchao Wang ,&nbsp;Qianli Ma ,&nbsp;Frank Tietz ,&nbsp;Jun Chen ,&nbsp;Olivier Guillon\",\"doi\":\"10.1016/j.esci.2023.100175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing cost-effective and reliable solid-state sodium batteries with superior performance is crucial for stationary energy storage. A key component in facilitating their application is a solid-state electrolyte with high conductivity and stability. Herein, we employed aliovalent cation substitution to enhance ionic conductivity while preserving the crystal structure. Optimized substitution of Y<sup>3+</sup> with Zr<sup>4+</sup> in Na<sub>5</sub>YSi<sub>4</sub>O<sub>12</sub> introduced Na<sup>+</sup> ​ion vacancies, resulting in high bulk and total conductivities of up to 6.5 and 3.3 ​mS ​cm<sup>−1</sup>, respectively, at room temperature with the composition Na<sub>4.92</sub>Y<sub>0.92</sub>Zr<sub>0.08</sub>Si<sub>4</sub>O<sub>12</sub> (NYZS). NYZS shows exceptional electrochemical stability (up to 10 ​V <em>vs</em>. Na<sup>+</sup>/Na), favorable interfacial compatibility with Na, and an excellent critical current density of 2.4 ​mA ​cm<sup>−2</sup>. The enhanced conductivity of Na<sup>+</sup> ​ions in NYZS was elucidated using solid-state nuclear magnetic resonance techniques and theoretical simulations, revealing two migration routes facilitated by the synergistic effect of increased Na<sup>+</sup> ​ion vacancies and improved chemical environment due to Zr<sup>4+</sup> substitution. NYZS extends the list of suitable solid-state electrolytes and enables the facile synthesis of stable, low-cost Na<sup>+</sup> ion silicate electrolytes.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"3 6\",\"pages\":\"Article 100175\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001131/pdfft?md5=cb33c7375e12888a74d10f0c49cb1fa4&pid=1-s2.0-S2667141723001131-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

开发经济、可靠、性能优越的固态钠电池是固定式储能的关键。促进其应用的关键因素是具有高导电性和稳定性的固态电解质。在这里,我们采用共价阳离子取代来提高离子电导率,同时保持晶体结构。在Na5YSi4O12中,通过优化Zr4+取代Y3+,引入Na+离子空位,在室温下获得了高的体积和总电导率,分别高达6.5和3.3 mS cm−1,组成为Na4.92Y0.92Zr0.08Si4O12 (NYZS)。NYZS具有优异的电化学稳定性(高达10 V vs. Na+/Na),与Na具有良好的界面相容性,临界电流密度为2.4 mA cm−2。利用固态核磁共振技术和理论模拟分析了Na+离子在NYZS中的电导率增强,揭示了Zr4+取代导致Na+离子空位增加和化学环境改善的协同作用促进了两条迁移途径。NYZS扩展了合适的固态电解质的列表,并能够轻松合成稳定,低成本的Na+离子硅酸盐电解质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced room-temperature Na+ ionic conductivity in Na4.92Y0.92Zr0.08Si4O12

Developing cost-effective and reliable solid-state sodium batteries with superior performance is crucial for stationary energy storage. A key component in facilitating their application is a solid-state electrolyte with high conductivity and stability. Herein, we employed aliovalent cation substitution to enhance ionic conductivity while preserving the crystal structure. Optimized substitution of Y3+ with Zr4+ in Na5YSi4O12 introduced Na+ ​ion vacancies, resulting in high bulk and total conductivities of up to 6.5 and 3.3 ​mS ​cm−1, respectively, at room temperature with the composition Na4.92Y0.92Zr0.08Si4O12 (NYZS). NYZS shows exceptional electrochemical stability (up to 10 ​V vs. Na+/Na), favorable interfacial compatibility with Na, and an excellent critical current density of 2.4 ​mA ​cm−2. The enhanced conductivity of Na+ ​ions in NYZS was elucidated using solid-state nuclear magnetic resonance techniques and theoretical simulations, revealing two migration routes facilitated by the synergistic effect of increased Na+ ​ion vacancies and improved chemical environment due to Zr4+ substitution. NYZS extends the list of suitable solid-state electrolytes and enables the facile synthesis of stable, low-cost Na+ ion silicate electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1