物理系统微分方程神经解算器方法的比较与分析

Fabio M Sim, E. Budiarto, Rusman Rusyadi
{"title":"物理系统微分方程神经解算器方法的比较与分析","authors":"Fabio M Sim, E. Budiarto, Rusman Rusyadi","doi":"10.26418/elkha.v13i2.49097","DOIUrl":null,"url":null,"abstract":"Differential equations are ubiquitous in many fields of study, yet not all equations, whether ordinary or partial, can be solved analytically. Traditional numerical methods such as time-stepping schemes have been devised to approximate these solutions. With the advent of modern deep learning, neural networks have become a viable alternative to traditional numerical methods. By reformulating the problem as an optimisation task, neural networks can be trained in a semi-supervised learning fashion to approximate nonlinear solutions. In this paper, neural solvers are implemented in TensorFlow for a variety of differential equations, namely: linear and nonlinear ordinary differential equations of the first and second order; Poisson’s equation, the heat equation, and the inviscid Burgers’ equation. Different methods, such as the naive and ansatz formulations, are contrasted, and their overall performance is analysed. Experimental data is also used to validate the neural solutions on test cases, specifically: the spring-mass system and Gauss’s law for electric fields. The errors of the neural solvers against exact solutions are investigated and found to surpass traditional schemes in certain cases. Although neural solvers will not replace the computational speed offered by traditional schemes in the near future, they remain a feasible, easy-to-implement substitute when all else fails.","PeriodicalId":32754,"journal":{"name":"Elkha Jurnal Teknik Elektro","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems\",\"authors\":\"Fabio M Sim, E. Budiarto, Rusman Rusyadi\",\"doi\":\"10.26418/elkha.v13i2.49097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential equations are ubiquitous in many fields of study, yet not all equations, whether ordinary or partial, can be solved analytically. Traditional numerical methods such as time-stepping schemes have been devised to approximate these solutions. With the advent of modern deep learning, neural networks have become a viable alternative to traditional numerical methods. By reformulating the problem as an optimisation task, neural networks can be trained in a semi-supervised learning fashion to approximate nonlinear solutions. In this paper, neural solvers are implemented in TensorFlow for a variety of differential equations, namely: linear and nonlinear ordinary differential equations of the first and second order; Poisson’s equation, the heat equation, and the inviscid Burgers’ equation. Different methods, such as the naive and ansatz formulations, are contrasted, and their overall performance is analysed. Experimental data is also used to validate the neural solutions on test cases, specifically: the spring-mass system and Gauss’s law for electric fields. The errors of the neural solvers against exact solutions are investigated and found to surpass traditional schemes in certain cases. Although neural solvers will not replace the computational speed offered by traditional schemes in the near future, they remain a feasible, easy-to-implement substitute when all else fails.\",\"PeriodicalId\":32754,\"journal\":{\"name\":\"Elkha Jurnal Teknik Elektro\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elkha Jurnal Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/elkha.v13i2.49097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elkha Jurnal Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/elkha.v13i2.49097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微分方程在许多研究领域中无处不在,但并非所有方程,无论是常方程还是偏方程,都可以解析求解。传统的数值方法,如时间步进格式已被设计来近似这些解。随着现代深度学习的出现,神经网络已经成为传统数值方法的可行替代方案。通过将问题重新表述为优化任务,神经网络可以以半监督学习的方式进行训练,以近似非线性解。本文在TensorFlow中对多种微分方程实现了神经解法,即:一阶和二阶的线性和非线性常微分方程;泊松方程,热方程,和无粘的伯格方程。对比了不同的方法,如朴素配方和ansatz配方,并分析了它们的总体性能。实验数据也被用来验证神经解法在测试用例上的正确性,特别是:弹簧-质量系统和电场的高斯定律。研究了神经解对精确解的误差,发现在某些情况下神经解的误差超过了传统方案。虽然神经解算器在不久的将来不会取代传统方案提供的计算速度,但当其他方案都失败时,它们仍然是可行的,易于实现的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems
Differential equations are ubiquitous in many fields of study, yet not all equations, whether ordinary or partial, can be solved analytically. Traditional numerical methods such as time-stepping schemes have been devised to approximate these solutions. With the advent of modern deep learning, neural networks have become a viable alternative to traditional numerical methods. By reformulating the problem as an optimisation task, neural networks can be trained in a semi-supervised learning fashion to approximate nonlinear solutions. In this paper, neural solvers are implemented in TensorFlow for a variety of differential equations, namely: linear and nonlinear ordinary differential equations of the first and second order; Poisson’s equation, the heat equation, and the inviscid Burgers’ equation. Different methods, such as the naive and ansatz formulations, are contrasted, and their overall performance is analysed. Experimental data is also used to validate the neural solutions on test cases, specifically: the spring-mass system and Gauss’s law for electric fields. The errors of the neural solvers against exact solutions are investigated and found to surpass traditional schemes in certain cases. Although neural solvers will not replace the computational speed offered by traditional schemes in the near future, they remain a feasible, easy-to-implement substitute when all else fails.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
23
审稿时长
10 weeks
期刊最新文献
Multi-oscillations Detection for Process Variables Based on K-Nearest Neighbor Interference Analysis Between 5G System and Fixed Satellite Service in the 28 GHz Band Heading control for quadruped stair climbing based on PD controller for the KRSRI competition Optimization Objective Function Corona Discharge Acoustic Using Fuzzy c-Means (FcM ) Temperature and Humidity Control System for Pole-Mounted Metering Circuit Breaker with Artificial Neural Network Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1