{"title":"不平衡配电网中分布式发电机最优定位和最优规模的混合优化","authors":"S. Mhetre, I. Korachagaon","doi":"10.1515/ehs-2021-0046","DOIUrl":null,"url":null,"abstract":"Abstract The goal of this work is to reduce power loss and improve voltage profile by formulating the optimal DG placement problem as a restricted nonlinear optimisation problem. As a novelty, the proposed hybrid algorithm, referred to as Multifactor Update-based Hybrid Model (MUHM) is constructed by merging the concepts of Lion Algorithm (LA) & Sea Lion Algorithm (Sea Lion Optimization Algorithm (SLnO). The Forward-Backward Sweep (FBSM) Model is used to calculate the power loss. Three test cases are examined for the voltage profile & loss minimization in the feeder team with DGs: “case 1(DG supplying real power alone (P), case 2 (DG supplying reactive power alone (Q) and Case 3 (DG supplying both real and reactive power)”. Application of the suggested method to various IEEE test systems, including IEEE 33, IEEE 123, and IEEE 69, respectively, is used to assess its efficacy. According, the results show that the presented work at loading percentage = 0 is 12, 15, 135, 4.65, and 8 superior to SFF, BBO, BAT, LA and SLnO, respectively.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid optimization for optimal positioning and sizing of distributed generators in unbalanced distribution networks\",\"authors\":\"S. Mhetre, I. Korachagaon\",\"doi\":\"10.1515/ehs-2021-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The goal of this work is to reduce power loss and improve voltage profile by formulating the optimal DG placement problem as a restricted nonlinear optimisation problem. As a novelty, the proposed hybrid algorithm, referred to as Multifactor Update-based Hybrid Model (MUHM) is constructed by merging the concepts of Lion Algorithm (LA) & Sea Lion Algorithm (Sea Lion Optimization Algorithm (SLnO). The Forward-Backward Sweep (FBSM) Model is used to calculate the power loss. Three test cases are examined for the voltage profile & loss minimization in the feeder team with DGs: “case 1(DG supplying real power alone (P), case 2 (DG supplying reactive power alone (Q) and Case 3 (DG supplying both real and reactive power)”. Application of the suggested method to various IEEE test systems, including IEEE 33, IEEE 123, and IEEE 69, respectively, is used to assess its efficacy. According, the results show that the presented work at loading percentage = 0 is 12, 15, 135, 4.65, and 8 superior to SFF, BBO, BAT, LA and SLnO, respectively.\",\"PeriodicalId\":36885,\"journal\":{\"name\":\"Energy Harvesting and Systems\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Harvesting and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ehs-2021-0046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Harvesting and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ehs-2021-0046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Hybrid optimization for optimal positioning and sizing of distributed generators in unbalanced distribution networks
Abstract The goal of this work is to reduce power loss and improve voltage profile by formulating the optimal DG placement problem as a restricted nonlinear optimisation problem. As a novelty, the proposed hybrid algorithm, referred to as Multifactor Update-based Hybrid Model (MUHM) is constructed by merging the concepts of Lion Algorithm (LA) & Sea Lion Algorithm (Sea Lion Optimization Algorithm (SLnO). The Forward-Backward Sweep (FBSM) Model is used to calculate the power loss. Three test cases are examined for the voltage profile & loss minimization in the feeder team with DGs: “case 1(DG supplying real power alone (P), case 2 (DG supplying reactive power alone (Q) and Case 3 (DG supplying both real and reactive power)”. Application of the suggested method to various IEEE test systems, including IEEE 33, IEEE 123, and IEEE 69, respectively, is used to assess its efficacy. According, the results show that the presented work at loading percentage = 0 is 12, 15, 135, 4.65, and 8 superior to SFF, BBO, BAT, LA and SLnO, respectively.