研究了废食用油作为碳中性还原剂清洗过程中磨砂与炉渣的分离行为

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Journal of Mining and Metallurgy Section B-Metallurgy Pub Date : 2021-01-01 DOI:10.2298/jmmb210407034w
Lanying Wang, Yunlin Wei, Shiwei Zhou, Bo Li, Hong Wang
{"title":"研究了废食用油作为碳中性还原剂清洗过程中磨砂与炉渣的分离行为","authors":"Lanying Wang, Yunlin Wei, Shiwei Zhou, Bo Li, Hong Wang","doi":"10.2298/jmmb210407034w","DOIUrl":null,"url":null,"abstract":"As a waste resource, waste cooking oil (WCO) has not been widely used. Based on the characteristics of WCO cracking, this study proposed to replace fossil-based reductant with WCO for copper slag cleaning, to solve the problem of carbon neutralization in this process. Copper slag cleaning experiments were carried out in a lab-scale electric furnace. The matte separated behavior from slag and the distribution of matte in slag were studied. The results showed that the Fe3O4 content decreases from 12.9 to 3.5 wt.% by injecting 2.2 mL of WCO into 300 g copper slag at 1250?C. The distribution of copper content in slag is gradient along the vertical direction. In the reduction stage, the excessive Fe3O4 is reduced and the fluidity of slag is improved. When the precipitation time above 60 minutes, the copper content in the middle and upper slag is reduced to 0.57 wt.%, which realizes the copper slag cleaning by using WCO.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"6 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Matte separated behavior from slag during the cleaning process by using waste cooking oil as carbon neutral reductant\",\"authors\":\"Lanying Wang, Yunlin Wei, Shiwei Zhou, Bo Li, Hong Wang\",\"doi\":\"10.2298/jmmb210407034w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a waste resource, waste cooking oil (WCO) has not been widely used. Based on the characteristics of WCO cracking, this study proposed to replace fossil-based reductant with WCO for copper slag cleaning, to solve the problem of carbon neutralization in this process. Copper slag cleaning experiments were carried out in a lab-scale electric furnace. The matte separated behavior from slag and the distribution of matte in slag were studied. The results showed that the Fe3O4 content decreases from 12.9 to 3.5 wt.% by injecting 2.2 mL of WCO into 300 g copper slag at 1250?C. The distribution of copper content in slag is gradient along the vertical direction. In the reduction stage, the excessive Fe3O4 is reduced and the fluidity of slag is improved. When the precipitation time above 60 minutes, the copper content in the middle and upper slag is reduced to 0.57 wt.%, which realizes the copper slag cleaning by using WCO.\",\"PeriodicalId\":51090,\"journal\":{\"name\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/jmmb210407034w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb210407034w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

废食用油作为一种废弃物资源,尚未得到广泛的利用。根据WCO裂解的特点,本研究提出用WCO代替化石基还原剂清洗铜渣,以解决该过程中的碳中和问题。在实验室电炉上进行了铜渣净化实验。研究了磨砂在炉渣中的分离行为和磨砂在炉渣中的分布。结果表明:在300 g铜渣中注入2.2 mL WCO,在1250℃下,Fe3O4含量从12.9%下降到3.5 wt.%;渣中铜含量沿垂直方向呈梯度分布。在还原阶段,减少了过量的Fe3O4,提高了渣的流动性。当沉淀时间大于60 min时,中上渣中的铜含量降至0.57 wt.%,实现了WCO对铜渣的净化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Matte separated behavior from slag during the cleaning process by using waste cooking oil as carbon neutral reductant
As a waste resource, waste cooking oil (WCO) has not been widely used. Based on the characteristics of WCO cracking, this study proposed to replace fossil-based reductant with WCO for copper slag cleaning, to solve the problem of carbon neutralization in this process. Copper slag cleaning experiments were carried out in a lab-scale electric furnace. The matte separated behavior from slag and the distribution of matte in slag were studied. The results showed that the Fe3O4 content decreases from 12.9 to 3.5 wt.% by injecting 2.2 mL of WCO into 300 g copper slag at 1250?C. The distribution of copper content in slag is gradient along the vertical direction. In the reduction stage, the excessive Fe3O4 is reduced and the fluidity of slag is improved. When the precipitation time above 60 minutes, the copper content in the middle and upper slag is reduced to 0.57 wt.%, which realizes the copper slag cleaning by using WCO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
40.00%
发文量
19
审稿时长
2 months
期刊介绍: University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded. Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.
期刊最新文献
The melting performance of high alumina blast furnace slags Recovery of Li, Mn, and Fe from LiFePO4/LiMn2O4 mixed waste lithium-ion battery cathode materials Modeling of partial reduction of hematite with carbon-monoxide in tunnel furnace Study on the drying characteristics of green pellets of ultrafine iron ore concentrate Effect of extrusion process on the stress corrosion cracking resistance of 7N01 aluminum alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1