锂离子电池老化循环热特性的实验分析

Yong Tian, Zhibing Zeng, Xiaoyu Li, Lijuan Xiang, Jindong Tian
{"title":"锂离子电池老化循环热特性的实验分析","authors":"Yong Tian, Zhibing Zeng, Xiaoyu Li, Lijuan Xiang, Jindong Tian","doi":"10.12783/dteees/iceee2019/31809","DOIUrl":null,"url":null,"abstract":"This paper investigates the thermal characteristic and heat generation mechanism of the lithium-ion battery during the aging cycles. The surface temperature distribution and the thermal characteristic of the battery were analyzed based on the infrared images. Results indicated that the surface temperature distribution of the battery is greatly dependent on the state of charge (SOC). The endothermic peak caused by the entropy heat coefficient of the reversible reaction heat gradually disappears as the increase of the discharge rate. The negative electrode has the highest temperature during the discharge process. The temperature rise of the battery gets higher as the battery ages, that is, the total heat output of the battery increases. However, the reversible reaction heat of the battery has little change with the increase of the aging cycles. The results of thermal behaviors analysis are conducive to understand the safety management and build a reliable thermal model for high energy density lithium-ion battery.","PeriodicalId":11324,"journal":{"name":"DEStech Transactions on Environment, Energy and Earth Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Analysis on the Thermal Characteristics of the Lithium-ion Battery During the Aging Cycles\",\"authors\":\"Yong Tian, Zhibing Zeng, Xiaoyu Li, Lijuan Xiang, Jindong Tian\",\"doi\":\"10.12783/dteees/iceee2019/31809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the thermal characteristic and heat generation mechanism of the lithium-ion battery during the aging cycles. The surface temperature distribution and the thermal characteristic of the battery were analyzed based on the infrared images. Results indicated that the surface temperature distribution of the battery is greatly dependent on the state of charge (SOC). The endothermic peak caused by the entropy heat coefficient of the reversible reaction heat gradually disappears as the increase of the discharge rate. The negative electrode has the highest temperature during the discharge process. The temperature rise of the battery gets higher as the battery ages, that is, the total heat output of the battery increases. However, the reversible reaction heat of the battery has little change with the increase of the aging cycles. The results of thermal behaviors analysis are conducive to understand the safety management and build a reliable thermal model for high energy density lithium-ion battery.\",\"PeriodicalId\":11324,\"journal\":{\"name\":\"DEStech Transactions on Environment, Energy and Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DEStech Transactions on Environment, Energy and Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/dteees/iceee2019/31809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Environment, Energy and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/dteees/iceee2019/31809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了锂离子电池在老化循环过程中的热特性和产热机理。基于红外图像分析了电池的表面温度分布和热特性。结果表明,电池的表面温度分布与荷电状态(SOC)有很大关系。可逆反应热的熵热系数引起的吸热峰随着流量的增加逐渐消失。在放电过程中,负极的温度最高。随着电池的老化,电池的温升越来越高,即电池的总发热量增加。而随着老化循环次数的增加,电池的可逆反应热变化不大。热行为分析结果有助于理解高能量密度锂离子电池的安全管理,建立可靠的热模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Analysis on the Thermal Characteristics of the Lithium-ion Battery During the Aging Cycles
This paper investigates the thermal characteristic and heat generation mechanism of the lithium-ion battery during the aging cycles. The surface temperature distribution and the thermal characteristic of the battery were analyzed based on the infrared images. Results indicated that the surface temperature distribution of the battery is greatly dependent on the state of charge (SOC). The endothermic peak caused by the entropy heat coefficient of the reversible reaction heat gradually disappears as the increase of the discharge rate. The negative electrode has the highest temperature during the discharge process. The temperature rise of the battery gets higher as the battery ages, that is, the total heat output of the battery increases. However, the reversible reaction heat of the battery has little change with the increase of the aging cycles. The results of thermal behaviors analysis are conducive to understand the safety management and build a reliable thermal model for high energy density lithium-ion battery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Environmental Performance Evaluation of Petrochemical Enterprises Based on Balanced Scorecard-Entropy Method Measurement and Numerical Simulation Analysis of Smoke Flow Field after Dust Collector Modification Research on Collaborative Filtering Recommendation Algorithm Based on Mahout Preparation of Ultrafine -Al2O3 Powder from Fly Ash by Ammonium Sulfate Roasting Technology Design of Dual Mode Power Supply Distribution Circuit with Detection and Control Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1