A. Grigorov, Oleksii Oleksandroych Мardupehko, I. Sinkevich, K. Shevchenko
{"title":"废物回收油品的防护性能","authors":"A. Grigorov, Oleksii Oleksandroych Мardupehko, I. Sinkevich, K. Shevchenko","doi":"10.20998/0821.2020.01.04","DOIUrl":null,"url":null,"abstract":"The protective properties of petroleum products obtained with the use of secondary raw materials, in particular plastic oils and polymer-containing bitumen, are investigated. The technology of obtaining plastic oils, was to conduct thermal degradation of polymeric wastes of polyethylene, polypropylene and polystyrene under laboratory conditions at atmospheric pressure in a batch reactor, with subsequent removal from the products of high-boiling fractions (onset of boiling > 320 °C), which match to plastic lubricant by their properties. Bitumen, in turn, was obtained by compounding high-boiling oil residues, in particular oil sludge with 10% by weight of polymeric additives of polypropylene and expanded polystyrene. For these products, resistance to atmospheric corrosion arising from the operation or storage of materials with metallic surfaces in open air, and environmental corrosion, which arises from the location of technological equipment and communications in the soil, especially in the presence of moisture, was investigated. In the process of researching it was found that both plastic oils and tested bitumen with all types of polymers have high protective properties. They prevent the formation of grade 3 metal sheets in aqueous solutions of 10 % NaCl and 3 % Na 2 SO 3 corrosion cells, which mimic the effects of atmospheric corrosion. The study of the influence of electrochemical corrosion was carried out using polarization dependences obtained under laboratory conditions, using the potentiostat P-45X. To determine the protective properties we used working electrodes made of carbon steel grade St3 (Celsius = 0.14 cm 2 ), reinforced in a frame of epoxy resin ED-5 with a hardener polyethylene polyamine with a deposited layer (layer thickness 0.1 mm) of the investigated of petroleum products that were placed in 0.5 M NaCl solution. It was determined that during the studies for 30 days, in the considered range of values, there was no change in the current density at a constant value of the potential (2.5 V), indicating the absence of electrochemical corrosion and the high protective properties of petroleum from secondary raw materials.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROTECTIVE PROPERTIES OF OIL PRODUCTS RECEIVED OF WASTE\",\"authors\":\"A. Grigorov, Oleksii Oleksandroych Мardupehko, I. Sinkevich, K. Shevchenko\",\"doi\":\"10.20998/0821.2020.01.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The protective properties of petroleum products obtained with the use of secondary raw materials, in particular plastic oils and polymer-containing bitumen, are investigated. The technology of obtaining plastic oils, was to conduct thermal degradation of polymeric wastes of polyethylene, polypropylene and polystyrene under laboratory conditions at atmospheric pressure in a batch reactor, with subsequent removal from the products of high-boiling fractions (onset of boiling > 320 °C), which match to plastic lubricant by their properties. Bitumen, in turn, was obtained by compounding high-boiling oil residues, in particular oil sludge with 10% by weight of polymeric additives of polypropylene and expanded polystyrene. For these products, resistance to atmospheric corrosion arising from the operation or storage of materials with metallic surfaces in open air, and environmental corrosion, which arises from the location of technological equipment and communications in the soil, especially in the presence of moisture, was investigated. In the process of researching it was found that both plastic oils and tested bitumen with all types of polymers have high protective properties. They prevent the formation of grade 3 metal sheets in aqueous solutions of 10 % NaCl and 3 % Na 2 SO 3 corrosion cells, which mimic the effects of atmospheric corrosion. The study of the influence of electrochemical corrosion was carried out using polarization dependences obtained under laboratory conditions, using the potentiostat P-45X. To determine the protective properties we used working electrodes made of carbon steel grade St3 (Celsius = 0.14 cm 2 ), reinforced in a frame of epoxy resin ED-5 with a hardener polyethylene polyamine with a deposited layer (layer thickness 0.1 mm) of the investigated of petroleum products that were placed in 0.5 M NaCl solution. It was determined that during the studies for 30 days, in the considered range of values, there was no change in the current density at a constant value of the potential (2.5 V), indicating the absence of electrochemical corrosion and the high protective properties of petroleum from secondary raw materials.\",\"PeriodicalId\":9407,\"journal\":{\"name\":\"Bulletin of the National Technical University \\\"KhPI\\\". Series: Chemistry, Chemical Technology and Ecology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the National Technical University \\\"KhPI\\\". Series: Chemistry, Chemical Technology and Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/0821.2020.01.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/0821.2020.01.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PROTECTIVE PROPERTIES OF OIL PRODUCTS RECEIVED OF WASTE
The protective properties of petroleum products obtained with the use of secondary raw materials, in particular plastic oils and polymer-containing bitumen, are investigated. The technology of obtaining plastic oils, was to conduct thermal degradation of polymeric wastes of polyethylene, polypropylene and polystyrene under laboratory conditions at atmospheric pressure in a batch reactor, with subsequent removal from the products of high-boiling fractions (onset of boiling > 320 °C), which match to plastic lubricant by their properties. Bitumen, in turn, was obtained by compounding high-boiling oil residues, in particular oil sludge with 10% by weight of polymeric additives of polypropylene and expanded polystyrene. For these products, resistance to atmospheric corrosion arising from the operation or storage of materials with metallic surfaces in open air, and environmental corrosion, which arises from the location of technological equipment and communications in the soil, especially in the presence of moisture, was investigated. In the process of researching it was found that both plastic oils and tested bitumen with all types of polymers have high protective properties. They prevent the formation of grade 3 metal sheets in aqueous solutions of 10 % NaCl and 3 % Na 2 SO 3 corrosion cells, which mimic the effects of atmospheric corrosion. The study of the influence of electrochemical corrosion was carried out using polarization dependences obtained under laboratory conditions, using the potentiostat P-45X. To determine the protective properties we used working electrodes made of carbon steel grade St3 (Celsius = 0.14 cm 2 ), reinforced in a frame of epoxy resin ED-5 with a hardener polyethylene polyamine with a deposited layer (layer thickness 0.1 mm) of the investigated of petroleum products that were placed in 0.5 M NaCl solution. It was determined that during the studies for 30 days, in the considered range of values, there was no change in the current density at a constant value of the potential (2.5 V), indicating the absence of electrochemical corrosion and the high protective properties of petroleum from secondary raw materials.