{"title":"普鲁兰衍生物缓释抗癌药物载体水凝胶基质的合成与表征","authors":"K. Bello","doi":"10.14419/ijac.v8i1.30549","DOIUrl":null,"url":null,"abstract":"The present study is aimed at designing a pullulan based hydrogel through grafting technique for slow release of fluorouracil drug. To achieve this, pullulan grafted acrylic acid was synthesized and characterized by FTIR, and FESEM analyses. Swelling was done in different pH solutions with better swelling in pH 2. As such, the drug loading was done in the specified pH environment. The release profile revealed that more than 90 % of the drug could be released within 5 days. The prepared hydrogel may be considered as stimuli responsive materials for oral drug delivery of anti-cancer drugs. ","PeriodicalId":13723,"journal":{"name":"International Journal of Advanced Chemistry","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of pullulan derived hydrogel matrix as carrier for slow release of anti-cancer drug\",\"authors\":\"K. Bello\",\"doi\":\"10.14419/ijac.v8i1.30549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study is aimed at designing a pullulan based hydrogel through grafting technique for slow release of fluorouracil drug. To achieve this, pullulan grafted acrylic acid was synthesized and characterized by FTIR, and FESEM analyses. Swelling was done in different pH solutions with better swelling in pH 2. As such, the drug loading was done in the specified pH environment. The release profile revealed that more than 90 % of the drug could be released within 5 days. The prepared hydrogel may be considered as stimuli responsive materials for oral drug delivery of anti-cancer drugs. \",\"PeriodicalId\":13723,\"journal\":{\"name\":\"International Journal of Advanced Chemistry\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/ijac.v8i1.30549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/ijac.v8i1.30549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and characterization of pullulan derived hydrogel matrix as carrier for slow release of anti-cancer drug
The present study is aimed at designing a pullulan based hydrogel through grafting technique for slow release of fluorouracil drug. To achieve this, pullulan grafted acrylic acid was synthesized and characterized by FTIR, and FESEM analyses. Swelling was done in different pH solutions with better swelling in pH 2. As such, the drug loading was done in the specified pH environment. The release profile revealed that more than 90 % of the drug could be released within 5 days. The prepared hydrogel may be considered as stimuli responsive materials for oral drug delivery of anti-cancer drugs.