智利圣地亚哥光化学活性和二次气溶胶的增加趋势(2001-2018年)

C. Menares, L. Gallardo, M. Kanakidou, R. Seguel, N. Huneeus
{"title":"智利圣地亚哥光化学活性和二次气溶胶的增加趋势(2001-2018年)","authors":"C. Menares, L. Gallardo, M. Kanakidou, R. Seguel, N. Huneeus","doi":"10.1080/16000889.2020.1821512","DOIUrl":null,"url":null,"abstract":"Abstract Despite the decline in partially (PM10) and fully (PM2.5) inhalable particles observed in recent decades, Santiago in Chile shows high levels of particle and ozone pollution. Attainment plans have emphasized measures aimed at curbing primary and, to some extent, secondary particles, but little attention has been paid to photochemical pollution. Nevertheless, ozone hourly mixing ratios in Eastern Santiago regularly exceed 110 ppbv in summer, and in winter maximum mixing ratios often reach 90 ppbv. Moreover, the sum of ozone and nitrogen dioxide shows an increasing trend of more than 3.5 ppbv per decade at 5 out of 8 stations. This trend is driven by increasing NO2, possibly associated with increasing motorization but also with changes in photochemistry. To estimate the fraction of secondary particles in PM2.5 and due to the lack of long-term speciation data for particles, we use carbon monoxide as a proxy of primary particles and ozone daily maxima as a proxy for secondary particle formation. We find a growing fraction of secondary particles due to an increase in the oxidizing capacity of Santiago’s atmosphere. This stresses the need for new curbing measures to tackle photochemical pollution. This is particularly needed in the context of a changing climate.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"23 1","pages":"1 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Increasing trends (2001–2018) in photochemical activity and secondary aerosols in Santiago, Chile\",\"authors\":\"C. Menares, L. Gallardo, M. Kanakidou, R. Seguel, N. Huneeus\",\"doi\":\"10.1080/16000889.2020.1821512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Despite the decline in partially (PM10) and fully (PM2.5) inhalable particles observed in recent decades, Santiago in Chile shows high levels of particle and ozone pollution. Attainment plans have emphasized measures aimed at curbing primary and, to some extent, secondary particles, but little attention has been paid to photochemical pollution. Nevertheless, ozone hourly mixing ratios in Eastern Santiago regularly exceed 110 ppbv in summer, and in winter maximum mixing ratios often reach 90 ppbv. Moreover, the sum of ozone and nitrogen dioxide shows an increasing trend of more than 3.5 ppbv per decade at 5 out of 8 stations. This trend is driven by increasing NO2, possibly associated with increasing motorization but also with changes in photochemistry. To estimate the fraction of secondary particles in PM2.5 and due to the lack of long-term speciation data for particles, we use carbon monoxide as a proxy of primary particles and ozone daily maxima as a proxy for secondary particle formation. We find a growing fraction of secondary particles due to an increase in the oxidizing capacity of Santiago’s atmosphere. This stresses the need for new curbing measures to tackle photochemical pollution. This is particularly needed in the context of a changing climate.\",\"PeriodicalId\":22320,\"journal\":{\"name\":\"Tellus B: Chemical and Physical Meteorology\",\"volume\":\"23 1\",\"pages\":\"1 - 18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tellus B: Chemical and Physical Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16000889.2020.1821512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus B: Chemical and Physical Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16000889.2020.1821512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

尽管近几十年来观测到部分可吸入颗粒物(PM10)和完全可吸入颗粒物(PM2.5)的下降,但智利圣地亚哥的颗粒物和臭氧污染水平很高。成就计划强调了旨在遏制一次和一定程度上的二次颗粒的措施,但很少关注光化学污染。然而,东圣地亚哥的臭氧每小时混合比在夏季经常超过110 ppbv,在冬季最大混合比经常达到90 ppbv。此外,在8个站点中的5个站点,臭氧和二氧化氮的总和显示出每十年增加3.5 ppbv以上的趋势。这一趋势是由二氧化氮的增加所驱动的,可能与摩托化的增加有关,但也与光化学的变化有关。为了估计PM2.5中二次颗粒的比例,并且由于缺乏颗粒的长期形态数据,我们使用一氧化碳作为一次颗粒的代表,臭氧的日最大值作为二次颗粒形成的代表。我们发现,由于圣地亚哥大气氧化能力的增加,二次粒子的比例越来越大。这强调了需要采取新的抑制措施来解决光化学污染。这在气候变化的背景下尤其需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increasing trends (2001–2018) in photochemical activity and secondary aerosols in Santiago, Chile
Abstract Despite the decline in partially (PM10) and fully (PM2.5) inhalable particles observed in recent decades, Santiago in Chile shows high levels of particle and ozone pollution. Attainment plans have emphasized measures aimed at curbing primary and, to some extent, secondary particles, but little attention has been paid to photochemical pollution. Nevertheless, ozone hourly mixing ratios in Eastern Santiago regularly exceed 110 ppbv in summer, and in winter maximum mixing ratios often reach 90 ppbv. Moreover, the sum of ozone and nitrogen dioxide shows an increasing trend of more than 3.5 ppbv per decade at 5 out of 8 stations. This trend is driven by increasing NO2, possibly associated with increasing motorization but also with changes in photochemistry. To estimate the fraction of secondary particles in PM2.5 and due to the lack of long-term speciation data for particles, we use carbon monoxide as a proxy of primary particles and ozone daily maxima as a proxy for secondary particle formation. We find a growing fraction of secondary particles due to an increase in the oxidizing capacity of Santiago’s atmosphere. This stresses the need for new curbing measures to tackle photochemical pollution. This is particularly needed in the context of a changing climate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Approach to Investigating the Relative Importance of Meteorological and Aerosol-Related Parameters in Determining Cloud Microphysical Properties Dimensionless Parameterizations of Air-Sea CO2 Gas Transfer Velocity on Surface Waves Transport of Mineral Dust Into the Arctic in Two Reanalysis Datasets of Atmospheric Composition The Climatic Role of Interactive Leaf Phenology in the Vegetation-Atmosphere System of Radiative-Convective Equilibrium Storm-Resolving Simulations Tropical and Boreal Forest – Atmosphere Interactions: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1