{"title":"社会智能的数据操作:劳动力市场技能提取和匹配的数据管道","authors":"D. Tamburri, W. Heuvel, Martin Garriga","doi":"10.1109/IRI49571.2020.00063","DOIUrl":null,"url":null,"abstract":"Big Data analytics supported by AI algorithms enable skills localization and retrieval, in the context of a labor market intelligence problem. We formulate and solve this problem through specific DataOps models, blending data sources from administrative and technical partners in several countries into cooperation, creating shared knowledge to support policy and decision-making. We then focus on the critical task of skills extraction from resumes and vacancies featuring state-of-the-art machine learning models. We showcase preliminary results with applied machine learning on real data from the employment agencies of the Netherlands and the Flemish region in Belgium. The final goal is to match these skills to standard ontologies of skills, jobs and occupations.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"DataOps for Societal Intelligence: a Data Pipeline for Labor Market Skills Extraction and Matching\",\"authors\":\"D. Tamburri, W. Heuvel, Martin Garriga\",\"doi\":\"10.1109/IRI49571.2020.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big Data analytics supported by AI algorithms enable skills localization and retrieval, in the context of a labor market intelligence problem. We formulate and solve this problem through specific DataOps models, blending data sources from administrative and technical partners in several countries into cooperation, creating shared knowledge to support policy and decision-making. We then focus on the critical task of skills extraction from resumes and vacancies featuring state-of-the-art machine learning models. We showcase preliminary results with applied machine learning on real data from the employment agencies of the Netherlands and the Flemish region in Belgium. The final goal is to match these skills to standard ontologies of skills, jobs and occupations.\",\"PeriodicalId\":93159,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI49571.2020.00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在劳动力市场情报问题的背景下,人工智能算法支持的大数据分析可以实现技能定位和检索。我们通过特定的DataOps模型制定和解决这一问题,将来自多个国家的行政和技术合作伙伴的数据源融合到合作中,创建共享知识以支持政策和决策。然后,我们将重点放在从简历和职位空缺中提取技能的关键任务上,并采用最先进的机器学习模型。我们展示了应用机器学习对来自荷兰和比利时佛兰德地区的就业机构的真实数据的初步结果。最终目标是将这些技能与技能、工作和职业的标准本体相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DataOps for Societal Intelligence: a Data Pipeline for Labor Market Skills Extraction and Matching
Big Data analytics supported by AI algorithms enable skills localization and retrieval, in the context of a labor market intelligence problem. We formulate and solve this problem through specific DataOps models, blending data sources from administrative and technical partners in several countries into cooperation, creating shared knowledge to support policy and decision-making. We then focus on the critical task of skills extraction from resumes and vacancies featuring state-of-the-art machine learning models. We showcase preliminary results with applied machine learning on real data from the employment agencies of the Netherlands and the Flemish region in Belgium. The final goal is to match these skills to standard ontologies of skills, jobs and occupations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1