干热气候下三混合蒸汽吸收式建筑制冷系统节能评价

G. Singh, R. Das
{"title":"干热气候下三混合蒸汽吸收式建筑制冷系统节能评价","authors":"G. Singh, R. Das","doi":"10.1115/power2021-64470","DOIUrl":null,"url":null,"abstract":"\n Thermally driven vapor absorption-based air-conditioning systems possess many advantages over the compression based systems. However, intermittent availability of input resources affects the operation of these absorption systems which causes discontinuous working. This study aims at examining the electrical and thermodynamic performance of a triple-hybrid vapor absorption-assisted air-conditioning system against a conventional system with the aid of EnergyPlus simulations for a small office building. The outside weather is subjected to hot-dry climatic condition. The heat input source includes biomass and solar energy-based resources. Auxiliary heat input is also used to ensure smooth operation. The performance of the absorption system is assessed at different generator temperature (70 °C–80 °C) and solar collector area (400 m2–500 m2). The results show that, by using absorption-based systems, a maximum of 34.1% electrical energy savings can be ensured at 500 m2 collector area with 70 °C generator temperature. The coefficient of performance of the absorption system escalates from 0.50 to 0.52 by increasing the generator temperature form 70 °C to 80 °C. Under the condition of 70 °C generator temperature and 500 m2 collector area, the absorption system can be made fully renewable energy dependent.","PeriodicalId":8567,"journal":{"name":"ASME 2021 Power Conference","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy Saving Assessment of Triple-Hybrid Vapor Absorption Building Cooling System Under Hot-Dry Climate\",\"authors\":\"G. Singh, R. Das\",\"doi\":\"10.1115/power2021-64470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Thermally driven vapor absorption-based air-conditioning systems possess many advantages over the compression based systems. However, intermittent availability of input resources affects the operation of these absorption systems which causes discontinuous working. This study aims at examining the electrical and thermodynamic performance of a triple-hybrid vapor absorption-assisted air-conditioning system against a conventional system with the aid of EnergyPlus simulations for a small office building. The outside weather is subjected to hot-dry climatic condition. The heat input source includes biomass and solar energy-based resources. Auxiliary heat input is also used to ensure smooth operation. The performance of the absorption system is assessed at different generator temperature (70 °C–80 °C) and solar collector area (400 m2–500 m2). The results show that, by using absorption-based systems, a maximum of 34.1% electrical energy savings can be ensured at 500 m2 collector area with 70 °C generator temperature. The coefficient of performance of the absorption system escalates from 0.50 to 0.52 by increasing the generator temperature form 70 °C to 80 °C. Under the condition of 70 °C generator temperature and 500 m2 collector area, the absorption system can be made fully renewable energy dependent.\",\"PeriodicalId\":8567,\"journal\":{\"name\":\"ASME 2021 Power Conference\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2021 Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/power2021-64470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2021 Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/power2021-64470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于热驱动蒸汽吸收的空调系统比基于压缩的系统具有许多优点。然而,输入资源的间歇性可用性影响了这些吸收系统的运行,从而导致不连续工作。本研究旨在利用EnergyPlus模拟软件,对一座小型办公大楼的三混合蒸汽吸收辅助空调系统与传统空调系统的电气和热力学性能进行研究。外面的天气受干热气候的影响。热输入源包括生物质和太阳能资源。采用辅助热输入,保证运行平稳。在不同的发电机温度(70°C - 80°C)和太阳能集热器面积(400 - 500 m2)下,对吸收系统的性能进行了评估。结果表明,在集热器面积为500 m2、发电机温度为70℃的条件下,采用吸收式集热器系统最多可节省34.1%的电能。当发生器温度从70°C增加到80°C时,吸收系统的性能系数从0.50上升到0.52。在发电机温度为70℃,集热器面积为500 m2的条件下,吸收系统可以完全依赖可再生能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy Saving Assessment of Triple-Hybrid Vapor Absorption Building Cooling System Under Hot-Dry Climate
Thermally driven vapor absorption-based air-conditioning systems possess many advantages over the compression based systems. However, intermittent availability of input resources affects the operation of these absorption systems which causes discontinuous working. This study aims at examining the electrical and thermodynamic performance of a triple-hybrid vapor absorption-assisted air-conditioning system against a conventional system with the aid of EnergyPlus simulations for a small office building. The outside weather is subjected to hot-dry climatic condition. The heat input source includes biomass and solar energy-based resources. Auxiliary heat input is also used to ensure smooth operation. The performance of the absorption system is assessed at different generator temperature (70 °C–80 °C) and solar collector area (400 m2–500 m2). The results show that, by using absorption-based systems, a maximum of 34.1% electrical energy savings can be ensured at 500 m2 collector area with 70 °C generator temperature. The coefficient of performance of the absorption system escalates from 0.50 to 0.52 by increasing the generator temperature form 70 °C to 80 °C. Under the condition of 70 °C generator temperature and 500 m2 collector area, the absorption system can be made fully renewable energy dependent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Inverse Method for Parameter Retrieval in Solar Thermal Collector With a Single Glass Cover Experimental Evaluation of Dewar Volume and Cryocooler Cold Finger Size in a Small-Scale Stirling Liquid Air Energy Storage (LAES) System Design Considerations of Solar-Driven Hydrogen Production Plants for Residential Applications Combined Cycle Gas Turbines With Electrically-Heated Thermal Energy Storage for Dispatchable Zero-Carbon Electricity Investigation of the Performance of Air-Steam Combined Cycle for Electric Power Plants Using Low Grade Solid Fuels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1