一种结合分段线性表示和神经网络的混合系统,用于库存预测

Yung-Keun Kwon, Hui-Di Sun
{"title":"一种结合分段线性表示和神经网络的混合系统,用于库存预测","authors":"Yung-Keun Kwon, Hui-Di Sun","doi":"10.1109/IFOST.2011.6021141","DOIUrl":null,"url":null,"abstract":"Stock price prediction is a challenging problem in the machine learning area due to a great noise in the stock market. In this paper, we propose a novel stock prediction method based on a multilayer feedforward neural network. To reduce the effect of noisy trends, it employs the piecewise linear representation which transforms the original time series of the stock price and the trading volume into a set of time segments. The transformed information is served as the input variables in the neural network for prediction. We tested the proposed method annually from 2001 to 2009. It showed a good performance of about 55% accuracy on average in predicting the price direction. It was also successful in making more profit than the buy-and-hold trading strategy.","PeriodicalId":20466,"journal":{"name":"Proceedings of 2011 6th International Forum on Strategic Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A hybrid system integrating a piecewise linear representation and a neural network for stock prediction\",\"authors\":\"Yung-Keun Kwon, Hui-Di Sun\",\"doi\":\"10.1109/IFOST.2011.6021141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock price prediction is a challenging problem in the machine learning area due to a great noise in the stock market. In this paper, we propose a novel stock prediction method based on a multilayer feedforward neural network. To reduce the effect of noisy trends, it employs the piecewise linear representation which transforms the original time series of the stock price and the trading volume into a set of time segments. The transformed information is served as the input variables in the neural network for prediction. We tested the proposed method annually from 2001 to 2009. It showed a good performance of about 55% accuracy on average in predicting the price direction. It was also successful in making more profit than the buy-and-hold trading strategy.\",\"PeriodicalId\":20466,\"journal\":{\"name\":\"Proceedings of 2011 6th International Forum on Strategic Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 6th International Forum on Strategic Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFOST.2011.6021141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 6th International Forum on Strategic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFOST.2011.6021141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于股票市场存在很大的噪声,股票价格预测在机器学习领域是一个具有挑战性的问题。本文提出了一种基于多层前馈神经网络的库存预测方法。为了减少趋势噪声的影响,该方法采用分段线性表示,将股票价格和交易量的原始时间序列转换为一组时间段。将变换后的信息作为神经网络的输入变量进行预测。从2001年到2009年,我们每年对所提出的方法进行测试。它在预测价格方向方面显示出了平均约55%的准确率。它还成功地获得了比买入并持有交易策略更多的利润。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid system integrating a piecewise linear representation and a neural network for stock prediction
Stock price prediction is a challenging problem in the machine learning area due to a great noise in the stock market. In this paper, we propose a novel stock prediction method based on a multilayer feedforward neural network. To reduce the effect of noisy trends, it employs the piecewise linear representation which transforms the original time series of the stock price and the trading volume into a set of time segments. The transformed information is served as the input variables in the neural network for prediction. We tested the proposed method annually from 2001 to 2009. It showed a good performance of about 55% accuracy on average in predicting the price direction. It was also successful in making more profit than the buy-and-hold trading strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crack-healing behavior of Al2O3/SiC composite Characterization of nanopowders produced by electrical explosion of titanium wires Design of fuzzy logic controller for two-wheeled self-balancing robot The design of the network video terminals based on embedded QT Theoretical calculation and numerical simulation of spherical lung cancer cells' refractive index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1