用响应面法优化新型环保型缓蚀剂石笋对碳钢在酸性介质中的缓蚀作用

IF 2.9 Q2 ELECTROCHEMISTRY Journal of Electrochemical Science and Engineering Pub Date : 2023-03-14 DOI:10.5599/jese.1628
Narimane Saigaa, Sabrina Bouguessa, Wafia Boukhedena, Mohammed Nacer, Ayoub Nadji, Abdelkarim Gouasmia
{"title":"用响应面法优化新型环保型缓蚀剂石笋对碳钢在酸性介质中的缓蚀作用","authors":"Narimane Saigaa, Sabrina Bouguessa, Wafia Boukhedena, Mohammed Nacer, Ayoub Nadji, Abdelkarim Gouasmia","doi":"10.5599/jese.1628","DOIUrl":null,"url":null,"abstract":"Ethyl acetate extract of Asphodelus ramosus (ARAE) was examined as an anti-corrosion agent for carbon steel (CS) in 1 M HCl acid medium using different techniques, namely weight loss method, potentiodynamic polarization, and electrochemical impedance spec­troscopy (EIS) at various temperatures and inhibitor concentrations. An inhibition efficiency of 89.81 % was obtained by the weight loss method at the inhibitor concentration of 700 ppm at 293 K. Increasing the temperature decreases the corrosion inhibition rate. Poten­tiodynamic polarization results showed that the extract is adsorbed on CS surface according to the Freundlich isotherm, while negative values of the standard free energy of adsorption (DG0ads) suggested the physical spontaneity of the adsorption reaction. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analyses were performed to examine the surface morphology of inhibited and uninhibited CS samples. Central composite design (CCD) based optimization was engaged to analyze factors and maximize inhibition efficiency by applying response surface methodology (RSM) using Design-Expert software.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"14 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of the inhibition corrosion of carbon steel in an acidic medium by a novel eco-friendly inhibitor Asphodelus ramosus using response surface methodology\",\"authors\":\"Narimane Saigaa, Sabrina Bouguessa, Wafia Boukhedena, Mohammed Nacer, Ayoub Nadji, Abdelkarim Gouasmia\",\"doi\":\"10.5599/jese.1628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ethyl acetate extract of Asphodelus ramosus (ARAE) was examined as an anti-corrosion agent for carbon steel (CS) in 1 M HCl acid medium using different techniques, namely weight loss method, potentiodynamic polarization, and electrochemical impedance spec­troscopy (EIS) at various temperatures and inhibitor concentrations. An inhibition efficiency of 89.81 % was obtained by the weight loss method at the inhibitor concentration of 700 ppm at 293 K. Increasing the temperature decreases the corrosion inhibition rate. Poten­tiodynamic polarization results showed that the extract is adsorbed on CS surface according to the Freundlich isotherm, while negative values of the standard free energy of adsorption (DG0ads) suggested the physical spontaneity of the adsorption reaction. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analyses were performed to examine the surface morphology of inhibited and uninhibited CS samples. Central composite design (CCD) based optimization was engaged to analyze factors and maximize inhibition efficiency by applying response surface methodology (RSM) using Design-Expert software.\",\"PeriodicalId\":15660,\"journal\":{\"name\":\"Journal of Electrochemical Science and Engineering\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/jese.1628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.1628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

摘要

采用失重法、动电位极化法和电化学阻抗光谱(EIS)等方法,在不同温度和抑制剂浓度条件下,对1 M HCl酸性介质中长叶石笋(Asphodelus ramosus, ARAE)乙酸乙酯提取物作为碳钢(CS)的防腐蚀剂进行了研究。在293k下,抑制剂浓度为700 ppm时,失重法的缓蚀率为89.81%。温度升高会降低缓蚀速率。电位动力学极化结果表明,根据Freundlich等温线,萃取物在CS表面被吸附,而标准吸附自由能(DG0ads)为负值表明吸附反应的物理自发性。采用扫描电镜(SEM)和能谱(EDS)分析了抑制和未抑制CS样品的表面形貌。利用design - expert软件,应用响应面法(RSM),进行基于中心复合设计(CCD)的优化,分析影响因素,实现抑制效率最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of the inhibition corrosion of carbon steel in an acidic medium by a novel eco-friendly inhibitor Asphodelus ramosus using response surface methodology
Ethyl acetate extract of Asphodelus ramosus (ARAE) was examined as an anti-corrosion agent for carbon steel (CS) in 1 M HCl acid medium using different techniques, namely weight loss method, potentiodynamic polarization, and electrochemical impedance spec­troscopy (EIS) at various temperatures and inhibitor concentrations. An inhibition efficiency of 89.81 % was obtained by the weight loss method at the inhibitor concentration of 700 ppm at 293 K. Increasing the temperature decreases the corrosion inhibition rate. Poten­tiodynamic polarization results showed that the extract is adsorbed on CS surface according to the Freundlich isotherm, while negative values of the standard free energy of adsorption (DG0ads) suggested the physical spontaneity of the adsorption reaction. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analyses were performed to examine the surface morphology of inhibited and uninhibited CS samples. Central composite design (CCD) based optimization was engaged to analyze factors and maximize inhibition efficiency by applying response surface methodology (RSM) using Design-Expert software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
27.30%
发文量
90
审稿时长
6 weeks
期刊最新文献
Synthesis of graphene by electrochemical exfoliation from petroleum coke for electrochemical energy storage application Primary aluminum-air flow battery for high-power applications: Optimization of power and self-discharge Electrocatalytic response of nitrogen-doped hollow carbon spheres modified glassy carbon electrode for sulphite detection in water A model of chronoamperometry of a two electrons electro-deposition reaction with the adsorption of intermediate Computational materials discovery and development for Li and non-Li advanced battery chemistries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1