{"title":"在存在区间剔除数据的情况下建立治愈率模型的新方法》(A New Approach to Modeling the Cure Rate in Presence of Interval Censored Data.","authors":"Suvra Pal, Yingwei Peng, Wisdom Aselisewine","doi":"10.1007/s00180-023-01389-7","DOIUrl":null,"url":null,"abstract":"<p><p>We consider interval censored data with a cured subgroup that arises from longitudinal followup studies with a heterogeneous population where a certain proportion of subjects is not susceptible to the event of interest. We propose a two component mixture cure model, where the first component describing the probability of cure is modeled by a support vector machine-based approach and the second component describing the survival distribution of the uncured group is modeled by a proportional hazard structure. Our proposed model provides flexibility in capturing complex effects of covariates on the probability of cure unlike the traditional models that rely on modeling the cure probability using a generalized linear model with a known link function. For the estimation of model parameters, we develop an expectation maximization-based estimation algorithm. We conduct simulation studies and show that our proposed model performs better in capturing complex effects of covariates on the cure probability when compared to the traditional logit link-based two component mixture cure model. This results in more accurate (smaller bias) and precise (smaller mean square error) estimates of the cure probabilities, which in-turn improves the predictive accuracy of the latent cured status. We further show that our model's ability to capture complex covariate effects also improves the estimation results corresponding to the survival distribution of the uncured. Finally, we apply the proposed model and estimation procedure to an interval censored data on smoking cessation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338591/pdf/","citationCount":"0","resultStr":"{\"title\":\"A New Approach to Modeling the Cure Rate in the Presence of Interval Censored Data.\",\"authors\":\"Suvra Pal, Yingwei Peng, Wisdom Aselisewine\",\"doi\":\"10.1007/s00180-023-01389-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider interval censored data with a cured subgroup that arises from longitudinal followup studies with a heterogeneous population where a certain proportion of subjects is not susceptible to the event of interest. We propose a two component mixture cure model, where the first component describing the probability of cure is modeled by a support vector machine-based approach and the second component describing the survival distribution of the uncured group is modeled by a proportional hazard structure. Our proposed model provides flexibility in capturing complex effects of covariates on the probability of cure unlike the traditional models that rely on modeling the cure probability using a generalized linear model with a known link function. For the estimation of model parameters, we develop an expectation maximization-based estimation algorithm. We conduct simulation studies and show that our proposed model performs better in capturing complex effects of covariates on the cure probability when compared to the traditional logit link-based two component mixture cure model. This results in more accurate (smaller bias) and precise (smaller mean square error) estimates of the cure probabilities, which in-turn improves the predictive accuracy of the latent cured status. We further show that our model's ability to capture complex covariate effects also improves the estimation results corresponding to the survival distribution of the uncured. Finally, we apply the proposed model and estimation procedure to an interval censored data on smoking cessation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338591/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-023-01389-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-023-01389-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A New Approach to Modeling the Cure Rate in the Presence of Interval Censored Data.
We consider interval censored data with a cured subgroup that arises from longitudinal followup studies with a heterogeneous population where a certain proportion of subjects is not susceptible to the event of interest. We propose a two component mixture cure model, where the first component describing the probability of cure is modeled by a support vector machine-based approach and the second component describing the survival distribution of the uncured group is modeled by a proportional hazard structure. Our proposed model provides flexibility in capturing complex effects of covariates on the probability of cure unlike the traditional models that rely on modeling the cure probability using a generalized linear model with a known link function. For the estimation of model parameters, we develop an expectation maximization-based estimation algorithm. We conduct simulation studies and show that our proposed model performs better in capturing complex effects of covariates on the cure probability when compared to the traditional logit link-based two component mixture cure model. This results in more accurate (smaller bias) and precise (smaller mean square error) estimates of the cure probabilities, which in-turn improves the predictive accuracy of the latent cured status. We further show that our model's ability to capture complex covariate effects also improves the estimation results corresponding to the survival distribution of the uncured. Finally, we apply the proposed model and estimation procedure to an interval censored data on smoking cessation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.